No Arabic abstract
In this article we presented a brief study of the main network models with growth and preferential attachment. Such models are interesting because they present several characteristics of real systems. We started with the classical model proposed by Barabasi and Albert: nodes are added to the network connecting preferably to other nodes that are more connected. We also presented models that consider more representative elements from social perspectives, such as the homophily between the vertices or the fitness that each node has to build connections. Furthermore, we showed a version of these models including the Euclidean distance between the nodes as a preferential attachment rule. Our objective is to investigate the basic properties of these networks as distribution of connectivity, degree correlation, shortest path, cluster coefficient and how these characteristics are affected by the preferential attachment rules. Finally, we also provided a comparison of these synthetic networks with real ones. We found that characteristics as homophily, fitness and geographic distance are significant preferential attachment rules to modeling real networks. These rules can change the degree distribution form of these synthetic network models and make them more suitable to model real networks.
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continuum limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed.
A preferential attachment model for a growing network incorporating deletion of edges is studied and the expected asymptotic degree distribution is analyzed. At each time step $t=1,2,ldots$, with probability $pi_1>0$ a new vertex with one edge attached to it is added to the network and the edge is connected to an existing vertex chosen proportionally to its degree, with probability $pi_2$ a vertex is chosen proportionally to its degree and an edge is added between this vertex and a randomly chosen other vertex, and with probability $pi_3=1-pi_1-pi_2<1/2$ a vertex is chosen proportionally to its degree and a random edge of this vertex is deleted. The model is intended to capture a situation where high-degree vertices are more dynamic than low-degree vertices in the sense that their connections tend to be changing. A recursion formula is derived for the expected asymptotic fraction $p_k$ of vertices with degree $k$, and solving this recursion reveals that, for $pi_3<1/3$, we have $p_ksim k^{-(3-7pi_3)/(1-3pi_3)}$, while, for $pi_3>1/3$, the fraction $p_k$ decays exponentially at rate $(pi_1+pi_2)/2pi_3$. There is hence a non-trivial upper bound for how much deletion the network can incorporate without loosing the power-law behavior of the degree distribution. The analytical results are supported by simulations.
We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existing site with a probability $propto k_i/r^{alpha_A}_i (alpha_A ge 0$; $k_i$ is the number of links of the $i^{th}$ site of the pre-existing graph, and $r_i$ its distance to the new site). Then we numerically determine that the probability distribution for a site to have $k$ links is asymptotically given, for all values of $alpha_G$, by $P(k) propto e_q^{-k/kappa}$, where $e_q^x equiv [1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $alpha_A$ not too large) by $q = 1+(1/3) e^{-0.526 alpha_A}$, and the characteristic number of links by $kappa simeq 0.1+0.08 alpha_A$. The $alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $<k_i>$ increases with the scaled time $t/i$; asymptotically, $<k_i > propto (t/i)^beta$, the exponent being close to $beta={1/2}(1-alpha_A)$ for $0 le alpha_A le 1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs $Gamma$-space for Hamiltonian systems) a scale-free network.
A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. However, the network percolation with more realistic evolution mechanisms such as preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially.