Do you want to publish a course? Click here

Scaling the electrical current switching of exchange bias in fully-epitaxial antiferromagnet/ferromagnet bilayers

97   0   0.0 ( 0 )
 Added by Tetsuya Hajiri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

While the electrical current manipulation of antiferromagnets (AFMs) has been demonstrated, the extent of the studied AFM materials has been limited with few systematic experiments and a poor understanding. We compare the electrical current switching of the exchange-bias field ($H_{ex}$) in AFM-Mn$_3A$N/ferromagnet-Co$_3$FeN bilayers. An applied pulse current can manipulate $H_{ex}$ with respect to the current density and FM layer magnetization, which shifts exponentially as a function of the current density. We found that the saturation current density and exponential decay constant $tau$ increase with the local moment of AFM Mn atoms. Our results highlight the effect of the AFM local moment to electrical current switching of $H_{ex}$, although it has a near-zero net magnetization, and may provide a facile way to explore the electrical current manipulation of AFM materials.



rate research

Read More

For ferromagnet/antiferromagnet bilayers, rotation of the easy axis has been textit{for the first time} observed during measurements of training effect and the recovery of exchange bias using FeNi/FeMn system. These salient phenomena strongly suggest irreversible motion of antiferromagnet spins during subsequent measurements of hysteresis loops. It is found that the rotation of the easy axis can partly account for the training effect and the recovery of the exchange bias.
Exchange bias has been studied in a series of La2/3Ca1/3MnO3 / La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution X-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron energy loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.
We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac-current in a NiFe/IrMn bilayer. At room temperature, we observe antidamping-like spin torque acting on the NiFe ferromagnet, generated by the in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.
We systematically measured the DC voltage V_ISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet/platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, V_ISH invariably has the same polarity. V_ISH furthermore scales with the magnetization precession cone angle with a universal prefactor, irrespective of the magnetic properties, the charge carrier transport mechanism or type. These findings quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.
We report electrical current switching of noncollinear antiferromagnetic (AFM) Mn$_3$GaN/Pt bilayers at room temperature. The Hall resistance of these bilayers can be manipulated by applying a pulse current of $1.5times10^6$~A/cm$^2$, whereas no significant change is observed up to $sim10^8$~A/cm$^2$ in Mn$_3$GaN single films, indicating that the Pt layer plays an important role. In comparison with ferrimagnetic Mn$_3$GaN/Pt bilayers, a lower electrical current switching of noncollinear AFM Mn$_3$GaN is demonstrated, with a critical current density two orders of magnitude smaller. Our results highlight that a combination of a noncollinear AFM antiperovskite nitride and a spin-torque technique is a good platform of AFM spintronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا