Do you want to publish a course? Click here

NLNDE: Enhancing Neural Sequence Taggers with Attention and Noisy Channel for Robust Pharmacological Entity Detection

197   0   0.0 ( 0 )
 Added by Lukas Lange
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Named entity recognition has been extensively studied on English news texts. However, the transfer to other domains and languages is still a challenging problem. In this paper, we describe the system with which we participated in the first subtrack of the PharmaCoNER competition of the BioNLP Open Shared Tasks 2019. Aiming at pharmacological entity detection in Spanish texts, the task provides a non-standard domain and language setting. However, we propose an architecture that requires neither language nor domain expertise. We treat the task as a sequence labeling task and experiment with attention-based embedding selection and the training on automatically annotated data to further improve our systems performance. Our system achieves promising results, especially by combining the different techniques, and reaches up to 88.6% F1 in the competition.



rate research

Read More

The recognition and normalization of clinical information, such as tumor morphology mentions, is an important, but complex process consisting of multiple subtasks. In this paper, we describe our system for the CANTEMIST shared task, which is able to extract, normalize and rank ICD codes from Spanish electronic health records using neural sequence labeling and parsing approaches with context-aware embeddings. Our best system achieves 85.3 F1, 76.7 F1, and 77.0 MAP for the three tasks, respectively.
We formulate sequence to sequence transduction as a noisy channel decoding problem and use recurrent neural networks to parameterise the source and channel models. Unlike direct models which can suffer from explaining-away effects during training, noisy channel models must produce outputs that explain their inputs, and their component models can be trained with not only paired training samples but also unpaired samples from the marginal output distribution. Using a latent variable to control how much of the conditioning sequence the channel model needs to read in order to generate a subsequent symbol, we obtain a tractable and effective beam search decoder. Experimental results on abstractive sentence summarisation, morphological inflection, and machine translation show that noisy channel models outperform direct models, and that they significantly benefit from increased amounts of unpaired output data that direct models cannot easily use.
Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.
Entity alignment typically suffers from the issues of structural heterogeneity and limited seed alignments. In this paper, we propose a novel Multi-channel Graph Neural Network model (MuGNN) to learn alignment-oriented knowledge graph (KG) embeddings by robustly encoding two KGs via multiple channels. Each channel encodes KGs via different relation weighting schemes with respect to self-attention towards KG completion and cross-KG attention for pruning exclusive entities respectively, which are further combined via pooling techniques. Moreover, we also infer and transfer rule knowledge for completing two KGs consistently. MuGNN is expected to reconcile the structural differences of two KGs, and thus make better use of seed alignments. Extensive experiments on five publicly available datasets demonstrate our superior performance (5% Hits@1 up on average).
Previous work on neural noisy channel modeling relied on latent variable models that incrementally process the source and target sentence. This makes decoding decisions based on partial source prefixes even though the full source is available. We pursue an alternative approach based on standard sequence to sequence models which utilize the entire source. These models perform remarkably well as channel models, even though they have neither been trained on, nor designed to factor over incomplete target sentences. Experiments with neural language models trained on billions of words show that noisy channel models can outperform a direct model by up to 3.2 BLEU on WMT17 German-English translation. We evaluate on four language-pairs and our channel models consistently outperform strong alternatives such right-to-left reranking models and ensembles of direct models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا