Do you want to publish a course? Click here

Bijective enumeration of rook walks

108   0   0.0 ( 0 )
 Added by Alexander Haupt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we answer a question posed by R. Stanley in his collection of Bijection Proof Problems (Problem 240). We present a bijective proof for the enumeration of walks of length $k$ a chess rook can move along on an $mtimes n$ board starting and ending on the same square.



rate research

Read More

182 - Heesung Shin , Jiang Zeng 2010
For a labeled tree on the vertex set $set{1,2,ldots,n}$, the local direction of each edge $(i,j)$ is from $i$ to $j$ if $i<j$. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a vertex is called its indegree. Thus the local (resp. global) indegree sequence $lambda = 1^{e_1}2^{e_2} ldots$ of a tree on the vertex set $set{1,2,ldots,n}$ is a partition of $n-1$. We construct a bijection from (unrooted) trees to rooted trees such that the local indegree sequence of a (unrooted) tree equals the global indegree sequence of the corresponding rooted tree. Combining with a Prufer-like code for rooted labeled trees, we obtain a bijective proof of a recent conjecture by Cotterill and also solve two open problems proposed by Du and Yin. We also prove a $q$-multisum binomial coefficient identity which confirms another conjecture of Cotterill in a very special case.
103 - Kenneth Barrese 2013
Goldman, Joichi, and White proved a beautiful theorem showing that the falling factorial generating function for the rook numbers of a Ferrers board factors over the integers. Briggs and Remmel studied an analogue of rook placements where rows are replaced by sets of $m$ rows called levels. They proved a version of the factorization theorem in that setting, but only for certain Ferrers boards. We generalize this result to any Ferrers board as well as giving a p,q-analogue. We also consider a dual situation involving weighted file placements which permit more than one rook in the same row. In both settings, we discuss properties of the resulting equivalence classes such as the number of elements in a class. In addition, we prove analogues of a theorem of Foata and Schutzenberger giving a distinguished representative in each class as well as make connections with the q,t-Catalan numbers. We end with some open questions raised by this work.
The emph{simplicial rook graph} SR(d,n) is the graph whose vertices are the lattice points in the $n$th dilate of the standard simplex in $mathbb{R}^d$, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of SR(3,n) have integral spectrum for every $n$. The proof proceeds by calculating an explicit eigenbasis. We conjecture that SR(d,n) is integral for all $d$ and $n$, and present evidence in support of this conjecture. For $n<binom{d}{2}$, the evidence indicates that the smallest eigenvalue of the adjacency matrix is $-n$, and that the corresponding eigenspace has dimension given by the Mahonian numbers, which enumerate permutations by number of
390 - Duff Baker-Jarvis 2019
Define a permutation to be any sequence of distinct positive integers. Given two permutations p and s on disjoint underlying sets, we denote by p sh s the set of shuffles of p and s (the set of all permutations obtained by interleaving the two permutations). A permutation statistic is a function St whose domain is the set of permutations such that St(p) only depends on the relative order of the elements of p. A permutation statistic is shuffle compatible if the distribution of St on p sh s depends only on St(p) and St(s) and their lengths rather than on the individual permutations themselves. This notion is implicit in the work of Stanley in his theory of P-partitions. The definition was explicitly given by Gessel and Zhuang who proved that various permutation statistics were shuffle compatible using mainly algebraic means. This work was continued by Grinberg. The purpose of the present article is to use bijective techniques to give demonstrations of shuffle compatibility. In particular, we show how a large number of permutation statistics can be shown to be shuffle compatible using a few simple bijections. Our approach also leads to a method for constructing such bijective proofs rather than having to treat each one in an ad hoc manner. Finally, we are able to prove a conjecture of Gessel and Zhuang about the shuffle compatibility of a certain statistic.
296 - Bruce E. Sagan 2020
The chromatic polynomial and its generalization, the chromatic symmetric function, are two important graph invariants. Celebrated theorems of Birkhoff, Whitney, and Stanley show how both objects can be expressed in three different ways: as sums over all spanning subgraphs, as sums over spanning subgraphs with no broken circuits, and in terms of acyclic orientations with compatible colorings. We establish all six of these expressions bijectively. In fact, we do this with only two bijections, as the proofs in the symmetric function setting are obtained using the same bijections as in the polynomial case and the bijection for broken circuits is just a restriction of the one for all spanning subgraphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا