Do you want to publish a course? Click here

Black holes as clouded mirrors: the Hayden-Preskill protocol with symmetry

96   0   0.0 ( 0 )
 Added by Yoshifumi Nakata Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hayden-Preskill protocol is a quantum information theoretic model of the black hole information paradox. Based on the protocol, it was revealed that information scrambling and entanglement lead to an instant leakage of information. In this paper, we study the information paradox with symmetry in the framework of the Hayden-Preskill protocol. Symmetry is an important feature of black holes that induces yet more conceptual puzzles in the regime of quantum gravity. We especially consider an axial symmetry and clarify its consequences in the information leakage problem. Using a partial decoupling approach, we first show that symmetry induces a emph{delay} of information leakage and an emph{information remnant}, both of which can be macroscopically large for certain initial conditions. We then clarify the physics behind the delay and the information remnant. By introducing the concept of emph{clipping of entanglement}, we show that the delay is characterized by thermodynamic properties of the black hole associated with the symmetry. We also show that the information remnant is closely related to the symmetry-breaking of the black hole. These relations indicate the existence of non-trivial microscopic-macroscopic correspondences in the information leakage problem.



rate research

Read More

We propose a microscopic quantum description for Hawking radiation as Andreev reflections, which resolves the quantum information paradox at black hole event horizons. The detailed microscopic analysis presented here reveals how a black hole, treated as an Andreev reflecting mirror, provides a manifestly unitary description of an evaporating black hole, expanding our previous analysis presented in [PRD 96, 124011 (2017), PRD 98, 124043 (2018)]; In our analogy, a black hole resolves the information paradox by accepting particles -- pairing them with the infalling Hawking quanta into a Bardeen-Cooper-Schrieffer (BCS) like quantum ground state -- while Andreev reflecting the quantum information as encoded in outgoing Hawking radiation. The present approach goes beyond the black hole final state proposal by Horowitz and Maldacena [JHEP 02, 008 (2004)], by providing necessary microscopic details which allows us to circumvent important shortcomings of the black hole final state proposal. We also generalize the present Hamiltonian description to make an analogy to the apparent loss of quantum information possible in an Einstein-Rosen bridge, via crossed Andreev reflections.
In this paper it is proved that the key to understanding the ghost imaging mystery are the crossing symmetric photon reactions in the nonlinear media. Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum mirror, observed in the ghost imaging experiments, are obtained as natural consequences of the energy-momentum conservation laws. So, it is shown that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement. The extension of these results to the ghost imaging with other kind of light is discussed. Some fundamental experiments for a decisive tests of the [SPDC-DFG]-quantum mirror are suggested.
We propose a general framework that leads to one-dimensional XX and Hubbard models in full generality, based on the decomposition of an arbitrary vector space (possibly infinite dimensional) into a direct sum of two subspaces, the two corresponding orthogonal projectors allowing one to define a R-matrix of a universal XX model, and then of a Hubbard model using a Shastry type construction. The QISM approach ensures integrability of the models, the properties of the obtained R-matrices leading to local Hubbard-like Hamiltonians. In all cases, the energies, the symmetry algebras and the scattering matrices are explicitly determined. The computation of the Bethe Ansatz equations for some subsectors of the universal Hubbard theories are determined, while they are fully computed in the XX case. A perturbative calculation in the large coupling regime is also done for the universal Hubbard models.
180 - Paul M. Alsing 2014
In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump source. We also analytically and dynamically verify the `Page information time for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.
We propose a general formula for the group of invertible topological phases on a space $Y$, possibly equipped with the action of a group $G$. Our formula applies to arbitrary symmetry types. When $Y$ is Euclidean space and $G$ a crystallographic group, the term `topological crystalline phases is sometimes used for these phases of matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا