Do you want to publish a course? Click here

Go Wide, Then Narrow: Efficient Training of Deep Thin Networks

80   0   0.0 ( 0 )
 Added by Denny Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. First, we sufficiently widen the deep thin network and train it until convergence. Then, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by layerwise imitation, that is, forcing the thin network to mimic the intermediate outputs of the wide network from layer to layer. Finally, we further fine tune this already well-initialized deep thin network. The theoretical guarantee is established by using the neural mean field analysis. It demonstrates the advantage of our layerwise imitation approach over backpropagation. We also conduct large-scale empirical experiments to validate the proposed method. By training with our method, ResNet50 can outperform ResNet101, and BERT Base can be comparable with BERT Large, when ResNet101 and BERT Large are trained under the standard training procedures as in the literature.



rate research

Read More

Deep neural networks (DNNs) have achieved great success in image classification, but they may be very vulnerable to adversarial attacks with small perturbations to images. Moreover, the adversarial training based on adversarial image samples has been shown to improve the robustness and generalization of DNNs. The aim of this paper is to develop a novel framework based on information-geometry sensitivity analysis and the particle swarm optimization to improve two aspects of adversarial image generation and training for DNNs. The first one is customized generation of adversarial examples. It can design adversarial attacks from options of the number of perturbed pixels, the misclassification probability, and the targeted incorrect class, and hence it is more flexible and effective to locate vulnerable pixels and also enjoys certain adversarial universality. The other is targeted adversarial training. DNN models can be improved in training with the adversarial information using a manifold-based influence measure effective in vulnerable image/pixel detection as well as allowing for targeted attacks, thereby exhibiting an enhanced adversarial defense in testing.
The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.
The record-breaking performance of deep neural networks (DNNs) comes with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it non-trivial to deploy DNN on resource-constrained devices, calling for minimizing the weight and data movements to improve the energy efficiency. We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both inference and training. The core of SD is a novel weight decomposition with structural constraints, carefully crafted to unleash the hardware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose non-zeros are quantized to power-of-2. The resulting sparse and quantized DNNs enjoy greatly reduced energy for data movement and weight storage, incurring minimal overhead to recover the original weights thanks to the sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, introducing innovative techniques to address the unique roadblocks arising in training while preserving the SD structures. We also design a dedicated hardware accelerator to fully utilize the SD structure to improve the real energy efficiency and latency. We conduct experiments on both multiple tasks, models and datasets in different settings. Results show that: 1) applied to inference, SD achieves up to 2.44x energy efficiency as evaluated via real hardware implementations; 2) applied to training, SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines. Our source codes are available online.
102 - Jianfei Chen , Yu Gai , Zhewei Yao 2020
Fully quantized training (FQT), which uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model, is a promising approach to accelerate the training of deep neural networks. One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties. In this paper, we address this problem by presenting a statistical framework for analyzing FQT algorithms. We view the quantized gradient of FQT as a stochastic estimator of its full precision counterpart, a procedure known as quantization-aware training (QAT). We show that the FQT gradient is an unbiased estimator of the QAT gradient, and we discuss the impact of gradient quantization on its variance. Inspired by these theoretical results, we develop two novel gradient quantizers, and we show that these have smaller variance than the existing per-tensor quantizer. For training ResNet-50 on ImageNet, our 5-bit block Householder quantizer achieves only 0.5% validation accuracy loss relative to QAT, comparable to the existing INT8 baseline.
Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic expansion assumption, which states that a low probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا