Do you want to publish a course? Click here

QM19 summary talk: Outlook and future of heavy-ion collisions

64   0   0.0 ( 0 )
 Added by Constantin Loizides
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A summary of the QM19 conference is given by highlighting a few selected results. These are discussed as examples to illustrate the exciting future of heavy-ion collisions and the need for further instrumentation. (The arXiv version is significantly longer than the printed proceedings, with more figures.)



rate research

Read More

This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the $alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$alpha$ decay of the Hoyle state is isolated.
Efficiency corrected single ratios of neutron and proton spectra in central $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn collisions at 120 MeV/u are combined with double ratios to provide constraints on the density and momentum dependencies of the isovector mean-field potential. Bayesian analyses of these data reveal that the isoscalar and isovector nucleon effective masses, $m_s^* - m_v^*$ are strongly correlated. The linear correlation observed in $m_s^* - m_v^*$ yields a nearly independent constraint on the effective mass splitting $Delta m_{np}^*= (m_n^*-m_p^*)/m_N = -0.05_{-0.09}^{+0.09}delta$. The correlated constraint on the standard symmetry energy, $S_0$ and the slope, $L$ at saturation density yields the values of symmetry energy $S(rho_s)=16.8_{-1.2}^{+1.2}$ MeV at a sensitive density of $rho_s/rho_0 = 0.43_{-0.05}^{+0.05}$.
107 - Eric Bonnet 2013
We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the impact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.
Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا