No Arabic abstract
Accurate and scalable hydrologic models are essential building blocks of several important applications, from water resource management to timely flood warnings. However, as the climate changes, precipitation and rainfall-runoff pattern variations become more extreme, and accurate training data that can account for the resulting distributional shifts become more scarce. In this work we present a novel family of hydrologic models, called HydroNets, which leverages river network structure. HydroNets are deep neural network models designed to exploit both basin specific rainfall-runoff signals, and upstream network dynamics, which can lead to improved predictions at longer horizons. The injection of the river structure prior knowledge reduces sample complexity and allows for scalable and more accurate hydrologic modeling even with only a few years of data. We present an empirical study over two large basins in India that convincingly support the proposed model and its advantages.
Joint models are a common and important tool in the intersection of machine learning and the physical sciences, particularly in contexts where real-world measurements are scarce. Recent developments in rainfall-runoff modeling, one of the prime challenges in hydrology, show the value of a joint model with shared representation in this important context. However, current state-of-the-art models depend on detailed and reliable attributes characterizing each site to help the model differentiate correctly between the behavior of different sites. This dependency can present a challenge in data-poor regions. In this paper, we show that we can replace the need for such location-specific attributes with a completely data-driven learned embedding, and match previous state-of-the-art results with less information.
As the application of deep neural networks proliferates in numerous areas such as medical imaging, video surveillance, and self driving cars, the need for explaining the decisions of these models has become a hot research topic, both at the global and local level. Locally, most explanation methods have focused on identifying relevance of features, limiting the types of explanations possible. In this paper, we investigate a new direction by leveraging latent features to generate contrastive explanations; predictions are explained not only by highlighting aspects that are in themselves sufficient to justify the classification, but also by new aspects which if added will change the classification. The key contribution of this paper lies in how we add features to rich data in a formal yet humanly interpretable way that leads to meaningful results. Our new definition of addition uses latent features to move beyond the limitations of previous explanations and resolve an open question laid out in Dhurandhar, et. al. (2018), which creates local contrastive explanations but is limited to simple datasets such as grayscale images. The strength of our approach in creating intuitive explanations that are also quantitatively superior to other methods is demonstrated on three diverse image datasets (skin lesions, faces, and fashion apparel). A user study with 200 participants further exemplifies the benefits of contrastive information, which can be viewed as complementary to other state-of-the-art interpretability methods.
We present a novel approach to leverage large unlabeled datasets by pre-training state-of-the-art deep neural networks on randomly-labeled datasets. Specifically, we train the neural networks to memorize arbitrary labels for all the samples in a dataset and use these pre-trained networks as a starting point for regular supervised learning. Our assumption is that the memorization infrastructure learned by the network during the random-label training proves to be beneficial for the conventional supervised learning as well. We test the effectiveness of our pre-training on several video action recognition datasets (HMDB51, UCF101, Kinetics) by comparing the results of the same network with and without the random label pre-training. Our approach yields an improvement - ranging from 1.5% on UCF-101 to 5% on Kinetics - in classification accuracy, which calls for further research in this direction.
We show how fitting sparse linear models over learned deep feature representations can lead to more debuggable neural networks. These networks remain highly accurate while also being more amenable to human interpretation, as we demonstrate quantiatively via numerical and human experiments. We further illustrate how the resulting sparse explanations can help to identify spurious correlations, explain misclassifications, and diagnose model biases in vision and language tasks. The code for our toolkit can be found at https://github.com/madrylab/debuggabledeepnetworks.
We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.