No Arabic abstract
A minimal requirement for any strongly coupled gauge field theory to have a classical dual bulk gravity description is that one should in principle be able to recover the full geometry as encoded on the asymptotics of the spacetime. Even this requirement cannot be fulfilled with arbitrary precision simply due to the fact that the boundary data is inherently noisy. We present a statistical approach to bulk reconstruction from entanglement entropy measurements, which handles the presence of noise in a natural way. Our approach therefore opens up a novel gateway for precision holography.
In this letter we use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to establish a set of old conjectures about symmetries in quantum gravity. These are that no global symmetries are possible, that internal gauge symmetries must come with dynamical objects that transform in all irreducible representations, and that internal gauge groups must be compact. These conjectures are not obviously true from a bulk perspective, they are nontrivial consequences of the non-perturbative consistency of the correspondence. More details of and background for these arguments are presented in an accompanying paper.
We develop a method for obtaining exact time-dependent solutions in Jackiw-Teitelboim gravity coupled to non-conformal matter and study consequences for $NAdS_2$ holography. We study holographic quenches in which we find that the black hole mass increases. A semi-holographic model composed of an infrared $NAdS_2$ holographic sector representing the mutual strong interactions of trapped impurities confined at a spatial point is proposed. The holographic sector couples to the position of a displaced impurity acting as a self-consistent boundary source. This effective $0+1-$dimensional description has a total conserved energy. Irrespective of the initial velocity of the particle, the black hole mass initially increases, but after the horizon runs away to infinity in the physical patch, the mass vanishes in the long run. The total energy is completely transferred to the kinetic energy or the self-consistent confining potential energy of the impurity. For initial velocities below a critical value determined by the mutual coupling, the black hole mass changes sign in finite time. Above this critical velocity, the initial condition of the particle can be retrieved from the $SL(2,R)$ invariant exponent that governs the exponential growth of the bulk gravitational $SL(2,R)$ charges at late time.
A rigorous (and simple) proof is given that there is a one-to-one correspondence between causal anti-deSitter covariant quantum field theories on anti-deSitter space and causal conformally covariant quantum field theories on its conformal boundary. The correspondence is given by the explicit identification of observables localized in wedge regions in anti-deSitter space and observables localized in double-cone regions in its boundary. It takes vacuum states into vacuum states, and positive-energy representations into positive-energy representations.
Clarifying conditions for the existence of a gravitational picture for a given quantum field theory (QFT) is one of the fundamental problems in the AdS/CFT correspondence. We propose a direct way to demonstrate the existence of the dual black holes: imaging an Einstein ring. We consider a response function of the thermal QFT on a two-dimensional sphere under a time-periodic localized source. The dual gravity picture, if it exists, is a black hole in an asymptotic global AdS$_4$ and a bulk probe field with a localized source on the AdS boundary. The response function corresponds to the asymptotic data of the bulk field propagating in the black hole spacetime. We find a formula that converts the response function to the image of the dual black hole: The view of the sky of the AdS bulk from a point on the boundary. Using the formula, we demonstrate that, for a thermal state dual to the Schwarzschild-AdS$_4$ spacetime, the Einstein ring is constructed from the response function. The evaluated Einstein radius is found to be determined by the total energy of the dual QFT. Our theoretical proposal opens a door to gravitational phenomena on strongly correlated materials.
We study the complexity of Gaussian mixed states in a free scalar field theory using the purification complexity. The latter is defined as the lowest value of the circuit complexity, optimized over all possible purifications of a given mixed state. We argue that the optimal purifications only contain the essential number of ancillary degrees of freedom necessary in order to purify the mixed state. We also introduce the concept of mode-by-mode purifications where each mode in the mixed state is purified separately and examine the extent to which such purifications are optimal. We explore the purification complexity for thermal states of a free scalar QFT in any number of dimensions, and for subregions of the vacuum state in two dimensions. We compare our results to those found using the various holographic proposals for the complexity of subregions. We find a number of qualitative similarities between the two in terms of the structure of divergences and the presence of a volume law. We also examine the mutual complexity in the various cases studied in this paper.