Do you want to publish a course? Click here

ASASSN-18am/SN 2018gk : An overluminous Type IIb supernova from a massive progenitor

109   0   0.0 ( 0 )
 Added by Subhash Bose
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of $M_V approx -20$ mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of $sim6.0~rm mag~(100 d)^{-1}$. Owing to the weakening of HI and the appearance of HeI in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution show significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesised $rm ^{56}Ni$ mass $M_{rm Ni} sim0.4~M_odot$ and ejecta with high kinetic energy $E_{rm kin} = (7-10) times10^{51} $ erg. Introducing a magnetar central engine still requires $M_{rm Ni} sim0.3~M_odot$ and $E_{rm kin}= 3times10^{51} $ erg. The high $rm ^{56}Ni$ mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high $rm ^{56}Ni$ yields. The earliest spectrum shows flash ionisation features, from which we estimate a mass-loss rate of $ dot{M}approx 2times10^{-4}~rm M_odot~yr^{-1} $. This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as $ 17,000 $ km/s for $H_alpha$, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of $1.8-3.4$ $M_odot$ using the [OI] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main sequence mass of $19-26$ $M_odot$.



rate research

Read More

We present optical and near-infrared observations of the rapidly evolving supernova (SN) 2017czd that shows hydrogen features. The optical light curves exhibit a short plateau phase ($sim 13$ days in the $R$-band) followed by a rapid decline by $4.5$ mag in $sim 20 mathrm{days}$ after the plateau. The decline rate is larger than those of any standard SNe, and close to those of rapidly evolving transients. The peak absolute magnitude is $-16.8$ mag in the $V$-band, which is within the observed range for SNe IIP and rapidly evolving transients. The spectra of SN 2017czd clearly show the hydrogen features and resemble those of SNe IIP at first. The H$alpha$ line, however, does not evolve much with time and it becomes similar to those in SNe IIb at decline phase. We calculate the synthetic light curves using a SN IIb progenitor which has 16 M$_{odot}$ at the zero-age main sequence and evolves in a binary system. The model with a low explosion energy ($5times 10^{50}$ erg) and a low ${}^{56}$Ni mass ($0.003 mathrm{M}_{odot}$) can reproduce the short plateau phase as well as the sudden drop of the light curve as observed in SN 2017czd. We conclude that SN 2017czd might be the first identified weak explosion from a SN IIb progenitor. We suggest that some rapidly evolving transients can be explained by such a weak explosion of the progenitors with little hydrogen-rich envelope.
We present comprehensive observations and analysis of the energetic H-stripped SN 2016coi (a.k.a. ASASSN-16fp), spanning the $gamma$-ray through optical and radio wavelengths, acquired within the first hours to $sim$420 days post explosion. Our campaign confirms the identification of He in the SN ejecta, which we interpret to be caused by a larger mixing of Ni into the outer ejecta layers. From the modeling of the broad bolometric light curve we derive a large ejecta mass to kinetic energy ratio ($M_{rm{ej}}sim 4-7,rm{M_{odot}}$, $E_{rm{k}}sim 7-8times 10^{51},rm{erg}$). The small [ion{Ca}{ii}] lamlam7291,7324 to [ion{O}{i}] lamlam6300,6364 ratio ($sim$0.2) observed in our late-time optical spectra is suggestive of a large progenitor core mass at the time of collapse. We find that SN 2016coi is a luminous source of X-rays ($L_{X}>10^{39},rm{erg,s^{-1}}$ in the first $sim100$ days post explosion) and radio emission ($L_{8.5,GHz}sim7times 10^{27},rm{erg,s^{-1}Hz^{-1}}$ at peak). These values are in line with those of relativistic SNe (2009bb, 2012ap). However, for SN 2016coi we infer substantial pre-explosion progenitor mass-loss with rate $dot M sim (1-2)times 10^{-4},rm{M_{odot}yr^{-1}}$ and a sub-relativistic shock velocity $v_{sh}sim0.15c$, in stark contrast with relativistic SNe and similar to normal SNe. Finally, we find no evidence for a SN-associated shock breakout $gamma$-ray pulse with energy $E_{gamma}>2times 10^{46},rm{erg}$. While we cannot exclude the presence of a companion in a binary system, taken together, our findings are consistent with a massive single star progenitor that experienced large mass loss in the years leading up to core-collapse, but was unable to achieve complete stripping of its outer layers before explosion.
140 - C. Fremling , H. Ko , A. Dugas 2019
We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility (ZTF). ZTF18aalrxas was discovered while the optical emission was still rising towards the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (UV, optical) light-curves, and optical spectra spanning from $approx0.7$ d to $approx180$ d past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium (NLTE) model, that simultanously reproduces both the $rm ^{56}Ni$ powered bolometric light curve and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 $mathrm{M}_{odot}$) and the total ejecta mass (1.7 $mathrm{M}_{odot}$) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius ($790-1050$ $mathrm{R}_{odot}$) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spetrum is modeled and analysed to constrain the amount of ejected oxygen ($0.3-0.5$ $mathrm{M}_{odot}$) and the total hydrogen mass ($approx0.15$ $mathrm{M}_{odot}$) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low ($12-13$ $mathrm{M}_{odot}$) Zero Age Main Sequence mass progenitor. The light curves and spectra of ZTF18aalrxas are not consistent with massive single star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.
Type Ic supernovae (SNe Ic) arise from the core-collapse of H (and He) poor stars, which could be either single WR stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak ($sim$10-15 d), without any early (first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long ($sim$30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic observed. We aim to determine the properties of this explosion and of its progenitor star. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modelled with hydrodynamical and analytical models, with particular focus on the early emission. Results. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modelling of the bolometric properties reveals a large ejecta mass ($sim$10 $M_{odot}$) and strong $^{56}$Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended ($sim$500 R$_{odot}$), low-mass ($sim$0.045 M$_{odot}$) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. The large ejecta mass and the presence of H and He free extended material around the star suggest that the progenitor of iPTF15dtg was a massive ($gtrsim$ 35 M$_{odot}$) WR star suffering strong mass loss.
The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from $sim 2$ to $sim450$ days after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at $sim 5400$ AA which is not seen in other SNe~Ic-3/4 at this epoch. This feature has been attributed to He I in the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the He I lines are unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak $sim 16$ d after core-collapse reaching a bolometric luminosity of Lp $sim 3times10^{42}$ ergs. Spectral models, including the nebular epoch, show that the SN ejected $2.5-4$ msun of material, with $sim 1.5$ msun below 5000 kms, and with a kinetic energy of $(4.5-7)times10^{51}$ erg. The explosion synthesised $sim 0.14$ msun of 56Ni. There are significant uncertainties in E(B-V)host and the distance however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had $M_mathrm{ZAMS}$ of $23-28$ msun and was stripped almost entirely down to its C/O core at explosion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا