Do you want to publish a course? Click here

Counterfactual Predictions under Runtime Confounding

66   0   0.0 ( 0 )
 Added by Amanda Coston
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Algorithms are commonly used to predict outcomes under a particular decision or intervention, such as predicting whether an offender will succeed on parole if placed under minimal supervision. Generally, to learn such counterfactual prediction models from observational data on historical decisions and corresponding outcomes, one must measure all factors that jointly affect the outcomes and the decision taken. Motivated by decision support applications, we study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data, but it is either undesirable or impermissible to use some such factors in the prediction model. We refer to this setting as runtime confounding. We propose a doubly-robust procedure for learning counterfactual prediction models in this setting. Our theoretical analysis and experimental results suggest that our method often outperforms competing approaches. We also present a validation procedure for evaluating the performance of counterfactual prediction methods.

rate research

Read More

Machine learning (ML) can automate decision-making by learning to predict decisions from historical data. However, these predictors may inherit discriminatory policies from past decisions and reproduce unfair decisions. In this paper, we propose two algorithms that adjust fitted ML predictors to make them fair. We focus on two legal notions of fairness: (a) providing equal opportunity (EO) to individuals regardless of sensitive attributes and (b) repairing historical disadvantages through affirmative action (AA). More technically, we produce fair EO and AA predictors by positing a causal model and considering counterfactual decisions. We prove that the resulting predictors are theoretically optimal in predictive performance while satisfying fairness. We evaluate the algorithms, and the trade-offs between accuracy and fairness, on datasets about admissions, income, credit and recidivism.
While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy---coming from robust statistics and optimization---is thus to build a model robust to distributional perturbations. In this paper, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity.
101 - Ye Tian , Yang Feng 2021
In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose an oracle algorithm and derive its $ell_2$-estimation error bounds. The theoretical analysis shows that under certain conditions, when the target and source are sufficiently close to each other, the estimation error bound could be improved over that of the classical penalized estimator using only target data. When we dont know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms.
Counterfactual inference has become a ubiquitous tool in online advertisement, recommendation systems, medical diagnosis, and econometrics. Accurate modeling of outcome distributions associated with different interventions -- known as counterfactual distributions -- is crucial for the success of these applications. In this work, we propose to model counterfactual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distribution. Based on this representation, we propose a distributional treatment effect (DTE) that can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying distributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Furthermore, our framework allows for more complex outcomes such as images, sequences, and graphs. Our experimental results on synthetic data and off-policy evaluation tasks demonstrate the advantages of the proposed estimator.
Reliable treatment effect estimation from observational data depends on the availability of all confounding information. While much work has targeted treatment effect estimation from observational data, there is relatively little work in the setting of confounding variable missingness, where collecting more information on confounders is often costly or time-consuming. In this work, we frame this challenge as a problem of feature acquisition of confounding features for causal inference. Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation. We propose two acquisition strategies based on i) covariate balancing (CB), and ii) reducing statistical estimation error on observed factual outcome error (OE). We compare CB and OE on five common causal effect estimation methods, and demonstrate improved sample efficiency of OE over baseline methods under various settings. We also provide visualizations for further analysis on the difference between our proposed methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا