Do you want to publish a course? Click here

Mirror Symmetry and smoothing Gorenstein toric affine 3-folds

147   0   0.0 ( 0 )
 Added by Andrea Petracci
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.



rate research

Read More

484 - Jungkai A. Chen , Meng Chen 2013
We prove the Conjecture of Catenese--Chen--Zhang: the inequality $K_X^3geq frac{4}{3}p_g(X)-frac{10}{3}$ holds for all projective Gorenstein minimal 3-folds $X$ of general type.
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford stack is isomorphic to the Saito structure associated to the mirror Landau-Ginzburg potential. We give a GKZ-style presentation of the quantum D-module, and a combinatorial description of quantum cohomology as a quantum Stanley-Reisner ring. We establish the convergence of the mirror isomorphism and of quantum cohomology in the big and equivariant setting.
We prove the rationality of the descendent partition function for stable pairs on nonsingular toric 3-folds. The method uses a geometric reduction of the 2- and 3-leg descendent vertices to the 1-leg case. As a consequence, we prove the rationality of the relative stable pairs partition functions for all log Calabi-Yau geometries of the form (X,K3) where X is a nonsingular toric 3-fold.
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Vafa of the Gromov-Witten theory of local Calabi-Yau toric 3-folds are proven to be correct in the full 3-leg setting.
Using new explicit formulas for the stationary GW/PT descendent correspondence for nonsingular projective toric 3-folds, we show that the correspondence intertwines the Virasoro constraints in Gromov-Witten theory for stable maps with the Virasoro constraints for stable pairs. Since the Virasoro constraints in Gromov-Witten theory are known to hold in the toric case, we establish the stationary Virasoro constraints for the theory of stable pairs on toric 3-folds. As a consequence, new Virasoro constraints for tautological integrals over Hilbert schemes of points on surfaces are also obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا