Do you want to publish a course? Click here

G-computation and doubly robust standardisation for continuous-time data: a comparison with inverse probability weighting

100   0   0.0 ( 0 )
 Added by Arthur Chatton
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly robust standardisation procedures to a continuous-time context. We compare their performance to the well-known inverse-probability-weighting (IPW) estimator for the estimation of the hazard ratio and restricted mean survival times difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation and the doubly robust standardisation are more efficient than inverse probability weighting. We also analyse two real-world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA to facilitate the use of these methods and their dissemination.



rate research

Read More

108 - Xinwei Ma , Jingshen Wang 2018
Inverse Probability Weighting (IPW) is widely used in empirical work in economics and other disciplines. As Gaussian approximations perform poorly in the presence of small denominators, trimming is routinely employed as a regularization strategy. However, ad hoc trimming of the observations renders usual inference procedures invalid for the target estimand, even in large samples. In this paper, we first show that the IPW estimator can have different (Gaussian or non-Gaussian) asymptotic distributions, depending on how close to zero the probability weights are and on how large the trimming threshold is. As a remedy, we propose an inference procedure that is robust not only to small probability weights entering the IPW estimator but also to a wide range of trimming threshold choices, by adapting to these different asymptotic distributions. This robustness is achieved by employing resampling techniques and by correcting a non-negligible trimming bias. We also propose an easy-to-implement method for choosing the trimming threshold by minimizing an empirical analogue of the asymptotic mean squared error. In addition, we show that our inference procedure remains valid with the use of a data-driven trimming threshold. We illustrate our method by revisiting a dataset from the National Supported Work program.
This paper investigates the problem of making inference about a parametric model for the regression of an outcome variable $Y$ on covariates $(V,L)$ when data are fused from two separate sources, one which contains information only on $(V, Y)$ while the other contains information only on covariates. This data fusion setting may be viewed as an extreme form of missing data in which the probability of observing complete data $(V,L,Y)$ on any given subject is zero. We have developed a large class of semiparametric estimators, which includes doubly robust estimators, of the regression coefficients in fused data. The proposed method is DR in that it is consistent and asymptotically normal if, in addition to the model of interest, we correctly specify a model for either the data source process under an ignorability assumption, or the distribution of unobserved covariates. We evaluate the performance of our various estimators via an extensive simulation study, and apply the proposed methods to investigate the relationship between net asset value and total expenditure among U.S. households in 1998, while controlling for potential confounders including income and other demographic variables.
We consider the estimation of the average treatment effect in the treated as a function of baseline covariates, where there is a valid (conditional) instrument. We describe two doubly robust (DR) estimators: a locally efficient g-estimator, and a targeted minimum loss-based estimator (TMLE). These two DR estimators can be viewed as generalisations of the two-stage least squares (TSLS) method to semi-parametric models that make weaker assumptions. We exploit recent theoretical results that extend to the g-estimator the use of data-adaptive fits for the nuisance parameters. A simulation study is used to compare standard TSLS with the two DR estimators finite-sample performance, (1) when fitted using parametric nuisance models, and (2) using data-adaptive nuisance fits, obtained from the Super Learner, an ensemble machine learning method. Data-adaptive DR estimators have lower bias and improved coverage, when compared to incorrectly specified parametric DR estimators and TSLS. When the parametric model for the treatment effect curve is correctly specified, the g-estimator outperforms all others, but when this model is misspecified, TMLE performs best, while TSLS can result in large biases and zero coverage. Finally, we illustrate the methods by reanalysing the COPERS (COping with persistent Pain, Effectiveness Research in Self-management) trial to make inference about the causal effect of treatment actually received, and the extent to which this is modified by depression at baseline.
This paper discusses an alternative to conditioning that may be used when the probability distribution is not fully specified. It does not require any assumptions (such as CAR: coarsening at random) on the unknown distribution. The well-known Monty Hall problem is the simplest scenario where neither naive conditioning nor the CAR assumption suffice to determine an updated probability distribution. This paper thus addresses a generalization of that problem to arbitrary distributions on finite outcome spaces, arbitrary sets of `messages, and (almost) arbitrary loss functions, and provides existence and characterization theorems for robust probability updating strategies. We find that for logarithmic loss, optimality is characterized by an elegant condition, which we call RCAR (reverse coarsening at random). Under certain conditions, the same condition also characterizes optimality for a much larger class of loss functions, and we obtain an objective and general answer to how one should update probabilities in the light of new information.
Missing attributes are ubiquitous in causal inference, as they are in most applied statistical work. In this paper, we consider various sets of assumptions under which causal inference is possible despite missing attributes and discuss corresponding approaches to average treatment effect estimation, including generalized propensity score methods and multiple imputation. Across an extensive simulation study, we show that no single method systematically out-performs others. We find, however, that doubly robust modifications of standard methods for average treatment effect estimation with missing data repeatedly perform better than their non-doubly robust baselines; for example, doubly robust generalized propensity score methods beat inverse-weighting with the generalized propensity score. This finding is reinforced in an analysis of an observations study on the effect on mortality of tranexamic acid administration among patients with traumatic brain injury in the context of critical care management. Here, doubly robust estimators recover confidence intervals that are consistent with evidence from randomized trials, whereas non-doubly robust estimators do not.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا