Do you want to publish a course? Click here

Calibrating the surface brightness - color relation for late-type red giants stars in the visible domain using VEGA/CHARA interferometric observations

87   0   0.0 ( 0 )
 Added by Nicolas Nardetto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The surface brightness - color relationship (SBCR) is a poweful tool for determining the angular diameter of stars from photometry. It was for instance used to derive the distance of eclipsing binaries in the Large Magellanic Cloud (LMC), which led to its distance determination with an accuracy of 1%. We calibrate the SBCR for red giant stars in the 2.1 < V-K < 2.5 color range using homogeneous VEGA/CHARA interferometric data secured in the visible domain, and compare it to the relation based on infrared interferometric observations, which were used to derive the distance to the LMC. Observations of eight G-K giants were obtained with the VEGA/CHARA instrument. The derived limb-darkened angular diameters were combined with a homogeneous set of infrared magnitudes in order to constrain the SBCR. The average precision we obtain on the limb-darkened angular diameters of the eight stars in our sample is 2.4%. For the four stars in common observed by both VEGA/CHARA and PIONIER/VLTI, we find a 1 sigma agreement for the angular diameters. The SBCR we obtain in the visible has a dispersion of 0.04 magnitude and is consistent with the one derived in the infrared (0.018 magnitude). The consistency of the infrared and visible angular diameters and SBCR reinforces the result of 1% precision and accuracy recently achieved on the distance of the LMC using the eclipsing-binary technique. It also indicates that it is possible to combine interferometric observations at different wavelengths when the SBCR is calibrated.



rate research

Read More

The aim of this work is to improve the SBC relation for early-type stars in the $-1 leq V-K leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to $V-K simeq 4$ using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: $gamma$ Ori, $zeta$ Per, $8$ Cyg, $iota$ Her, $lambda$ Aql, $zeta$ Peg, $gamma$ Lyr, and $delta$ Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about $1.5%$. Using our total sample of 132 stars with $V-K$ colors index ranging from about $-1$ to $4$, we provide a revised SBC relation. For late-type stars ($0 leq V-K leq 4$), the results are consistent with previous studies. For early-type stars ($-1 leq V-K leq 0$), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or $simeq 7%$ in terms of angular diameter.
268 - Daniel Bonneau 2010
We obtained spectro-interferometric observations in the visible of $beta$ Lyrae and $upsilon$ Sgr using the instrument VEGA of the CHARA interferometric array. For $beta$ Lyrae, the dispersed fringe visibilities and differential phases were obtained in spectral regions containing the H$alpha$ and HeI 6678 lines and the H$beta$ and HeI 4921 lines. Whereas the source is unresolved in the continuum, the source of the emission lines is resolved and the photocenter of the bulk of the H$alpha$ emission exhibits offsets correlated with the orbital phase. For $upsilon$ Sgr, both the continuum and H$alpha$ sources are resolved, but no clear binary signal is detected. The differential phase shift across the line reveals that the bulk of the H$alpha$ emission is clearly offset from the primary.
Surface brightness-color relations (SBCRs) are used for estimating angular diameters and deriving stellar properties. They are critical to derive extragalactic distances of early-type and late-type eclipsing binaries or, potentially, for extracting planetary parameters of late-type stars hosting planets. Various SBCRs have been implemented so far, but strong discrepancies in terms of precision and accuracy still exist in the literature. We aim to develop a precise SBCR for early-type B and A stars using selection criteria, based on stellar characteristics, and combined with homogeneous interferometric angular diameter measurements. We also improve SBCRs for late-type stars, in particular in the Gaia photometric band. We observed 18 early-type stars with the VEGA interferometric instrument, installed on the CHARA array. We then applied additional criteria on the photometric measurements, together with stellar characteristics diagnostics in order to build the SBCRs. We calibrated a SBCR for subgiant and dwarf early-type stars. The RMS of the relation is $sigma_{F_{V_{0}}} = 0.0051,$mag, leading to an average precision of 2.3% on the estimation of angular diameters, with 3.1% for $V-K < -0.2,$mag and 1.8% for $V-K > -0.2,$mag. We found that the conversion between Johnson-$K$ and 2MASS-$K_s$ photometries is a key issue for early-type stars. Following this result, we have revisited our previous SBCRs for late-type stars by calibrating them with either converted Johnson-$K$ or 2MASS-$K_s$ photometries. We also improve the calibration of these SBCRs based on the Gaia photometry. The expected precision on the angular diameter using our SBCRs for late-type stars ranges from 1.0% to 2.7%. By reaching a precision of 2.3% on the estimation of angular diameters for early-type stars, significant progress has been made to determine extragalactic distances using early-type eclipsing binaries.
The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Observations of delta Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of theta_cse=8.9 +/- 3.0 mas and a relative flux contribution of f_cse=0.07+/-0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2sigma) with two different regimes over the pulsation cycle of the star, phi=0.0-0.8 and phi=0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. For the first time we have been able to detect in the visible domain a resolved structure around delta~Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and modelling.
Surface brightness-colour relations (SBCRs) are used to derive the stellar angular diameters from photometric observations. They have various astrophysical applications, such as the distance determination of eclipsing binaries or the determination of exoplanet parameters. However, strong discrepancies between the SBCRs still exist in the literature, in particular for early and late-type stars. We aim to calibrate new SBCRs as a function of the spectral type and the luminosity class of the stars. Our goal is also to apply homogeneous criteria to the selection of the reference stars and in view of compiling an exhaustive and up-to-date list of interferometric late-type targets. We implemented criteria to select measurements in the JMMC Measured Diameters Catalog (JMDC). We then applied additional criteria on the photometric measurements used to build the SBCRs, together with stellar characteristics diagnostics. We built SBCRs for F5/K7-II/III, F5/K7-IV/V, M-II/III and M-V stars, with respective RMS of $sigma_{F_{V}} = 0.0022$ mag, $sigma_{F_{V}} = 0.0044$ mag, $sigma_{F_{V}} = 0.0046$ mag, and $sigma_{F_{V}} = 0.0038$ mag. This results in a precision on the angular diameter of 1.0%, 2.0%, 2.1%, and 1.7%, respectively. These relations cover a large $V-K$ colour range of magnitude, from 1 to 7.5. Our work demonstrates that SBCRs are significantly dependent on the spectral type and the luminosity class of the star. Through a new set of interferometric measurements, we demonstrate the critical importance of the selection criteria proposed for the calibration of SBCR. Finally, using the Gaia photometry for our samples, we obtained (G-K) SBCRs with a precision on the angular diameter between 1.1% and 2.4%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا