Study of Parrondos paradox regions in one-dimensional quantum walks


Abstract in English

The well-known counterintuitive phenomenon, where the combination of unfavorable situations can establish favorable ones, is called Parrondos paradox. Here, we study one-dimensional discrete-time quantum walks, manipulating two different coins (two-state) operators representing two losing games A and B, respectively, to create the Parrondo effect in the quantum domain. We exhibit that games A and B are losing games when played individually but could produce a winning expectation when played alternatively for a particular sequence of the different periods. Moreover, we also analyze the relationships between Parrondos games and quantum entanglement in our scheme. Along with the applications of different kinds of quantum walks, our outcomes potentially encourage the development of new quantum algorithms.

Download