No Arabic abstract
Load modeling is difficult due to its uncertain and time-varying properties. Through the recently proposed ambient signals load modeling approach, these properties can be more frequently tracked. However, the large dataset of load modeling results becomes a new problem. In this paper, a hierarchical temporal and spatial clustering method of load models is proposed, after which the large size load model dataset can be represented by several representative load models (RLMs). In the temporal clustering stage, the RLMs of one load bus are picked up through clustering to represent all the load models of the load bus at different time. In the spatial clustering stage, the RLMs of all the load buses form a new set and the RLMs of the system are picked up through spatial clustering. In this way, the large sets of load models are represented by a small number of RLMs, through which the storage space of the load models is significantly reduced. The validation results in IEEE 39 bus system have shown that the simulation accuracy can still be maintained after replacing the load models with the RLMs. In this way, the effectiveness of the proposed hierarchical clustering framework is validated.
We propose algorithms for performing model checking and control synthesis for discrete-time uncertain systems under linear temporal logic (LTL) specifications. We construct temporal logic trees (TLT) from LTL formulae via reachability analysis. In contrast to automaton-based methods, the construction of the TLT is abstraction-free for infinite systems, that is, we do not construct discrete abstractions of the infinite systems. Moreover, for a given transition system and an LTL formula, we prove that there exist both a universal TLT and an existential TLT via minimal and maximal reachability analysis, respectively. We show that the universal TLT is an underapproximation for the LTL formula and the existential TLT is an overapproximation. We provide sufficient conditions and necessary conditions to verify whether a transition system satisfies an LTL formula by using the TLT approximations. As a major contribution of this work, for a controlled transition system and an LTL formula, we prove that a controlled TLT can be constructed from the LTL formula via control-dependent reachability analysis. Based on the controlled TLT, we design an online control synthesis algorithm, under which a set of feasible control inputs can be generated at each time step. We also prove that this algorithm is recursively feasible. We illustrate the proposed methods for both finite and infinite systems and highlight the generality and online scalability with two simulated examples.
This paper investigates bilateral control of teleoperators with closed architecture and subjected to arbitrary bounded time-varying delay. A prominent challenge for bilateral control of such teleoperators lies in the closed architecture, especially in the context not involving interaction force/torque measurement. This yields the long-standing situation that most bilateral control rigorously developed in the literature is hard to be justified as applied to teleoperators with closed architecture. With a new class of dynamic feedback, we propose kinematic and adaptive dynamic controllers for teleoperators with closed architecture, and we show that the proposed kinematic and dynamic controllers are robust with respect to arbitrary bounded time-varying delay. In addition, by exploiting the input-output properties of an inverted form of the dynamics of robot manipulators with closed architecture, we remove the assumption of uniform exponential stability of a linear time-varying system due to the adaptation to the gains of the inner controller in demonstrating stability of the presented adaptive dynamic control. The application of the proposed approach is illustrated by the experimental results using a Phantom Omni and a UR10 robot.
This paper studies the robust satisfiability check and online control synthesis problems for uncertain discrete-time systems subject to signal temporal logic (STL) specifications. Different from existing techniques, this work proposes an approach based on STL, reachability analysis, and temporal logic trees. Firstly, a real-time version of STL semantics and a tube-based temporal logic tree are proposed. We show that such a tree can be constructed from every STL formula. Secondly, using the tube-based temporal logic tree, a sufficient condition is obtained for the robust satisfiability check of the uncertain system. When the underlying system is deterministic, a necessary and sufficient condition for satisfiability is obtained. Thirdly, an online control synthesis algorithm is designed. It is shown that when the STL formula is robustly satisfiable and the initial state of the system belongs to the initial root node of the tube-based temporal logic tree, it is guaranteed that the trajectory generated by the controller satisfies the STL formula. The effectiveness of the proposed approach is verified by an automated car overtaking example.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concrete system, which constitutes property satisfaction for the continuous-time system non-trivial. In this work, we aim at relaxing this requirement by introducing a control interface. Firstly, we connect the continuous-time uncertain concrete system with its discrete deterministic state-space abstraction with a control interface. Then, a novel stability notion called $eta$-approximate controlled globally practically stable, and a new simulation relation called robust approximate simulation relation are proposed. It is shown that the uncertain concrete system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made $eta$-approximate controlled globally practically stable, robustly approximately simulates its discrete abstraction. The effectiveness of the proposed results is illustrated by two simulation examples.
The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. We designed an end-to-end generative framework for the creation of synthetic bus-level time-series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the scheme we developed allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, we develop an open-source tool called LoadGAN which gives researchers access to the fully trained generative models via a graphical interface.