No Arabic abstract
Physical and chemical properties of the interstellar medium (ISM) at sub-galactic ($sim$kpc) scales play an indispensable role in controlling the ability of gas to form stars. As part of the SMAUG (Simulating Multiscale Astrophysics to Understand Galaxies) project, in this paper, we use the TNG50 cosmological simulation to explore the physical parameter space of 8 resolved ISM properties in star-forming regions to constrain the areas of this hyperspace over which most star-forming environments exist. We deconstruct our simulated galaxies spanning a wide range of mass (M$_star = 10^{7-11}$ M$_odot$) and redshift ($0 leq z leq 3$) into kpc-sized regions, and statistically analyze the gas/stellar surface densities, gas metallicity, vertical stellar velocity dispersion, epicyclic frequency and dark-matter volumetric density representative of each region in the context of their star formation activity and galactic environment (radial galactocentric location). By examining the star formation rate (SFR) weighted distributions of these properties, we show that stars primarily form in two spatially distinct environmental regimes, which are brought about by an underlying bi-component radial SFR surface density profile in galaxies. We examine how the relative prominence of these two regimes depends on host galaxy mass and cosmic time. We also compare our findings with those from integral field spectroscopy observations and achieve a good overall agreement. Further, using dimensionality reduction, we characterise the aforementioned hyperspace to reveal a high-degree of multicollinearity in relationships amongst ISM properties that drive the distribution of star formation at kpc-scales. Based on this, we show that a reduced 3D representation underpinned by a multi-variate radius relationship is sufficient to capture most of the variance in the original 8D space.
We perform spatially resolved stellar population analysis for a sample of 69 early-type galaxies (ETGs) from the CALIFA integral field spectroscopic survey, including 48 ellipticals and 21 S0s. We generate and quantitatively characterize profiles of light-weighted mean stellar age and metallicity within $lesssim 2R_e$, as a function of radius and stellar-mass surface density $mu_*$. We study in detail the dependence of profiles on galaxies global properties, including velocity dispersion $sigma_e$, stellar mass, morphology. ETGs are universally characterized by strong, negative metallicity gradients ($sim -0.3,text{dex}$ per $R_e$) within $1,R_e$, which flatten out moving towards larger radii. A quasi-universal local $mu_*$-metallicity relation emerges, which displays a residual systematic dependence on $sigma_e$, whereby higher $sigma_e$ implies higher metallicity at fixed $mu_*$. Age profiles are typically U-shaped, with minimum around $0.4,R_e$, asymptotic increase to maximum ages beyond $sim 1.5,R_e$, and an increase towards the centre. The depth of the minimum and the central increase anti-correlate with $sigma_e$. A possible qualitative interpretation of these observations is a two-phase scenario. In the first phase, dissipative collapse occurs in the inner $1,R_e$, establishing a negative metallicity gradient. The competition between the outside-in quenching due to feedback-driven winds and some form of inside-out quenching, possibly caused by central AGN feedback or dynamical heating, determines the U-shaped age profiles. In the second phase, the accretion of ex-situ stars from quenched and low-metallicity satellites shapes the flatter stellar population profiles in the outer regions.
We compare the star forming main sequence (SFMS) -- both integrated and resolved on 1kpc scales -- between the high-resolution TNG50 simulation of IllustrisTNG and observations from the 3D-HST slitless spectroscopic survey at z~1. Contrasting integrated star formation rates (SFRs), we find that the slope and normalization of the star-forming main sequence in TNG50 are quantitatively consistent with values derived by fitting observations from 3D-HST with the Prospector Bayesian inference framework. The previous offsets of 0.2-1dex between observed and simulated main sequence normalizations are resolved when using the updated masses and SFRs from Prospector. The scatter is generically smaller in TNG50 than in 3D-HST for more massive galaxies with M_*>10^10Msun, even after accounting for observational uncertainties. When comparing resolved star formation, we also find good agreement between TNG50 and 3D-HST: average specific star formation rate (sSFR) radial profiles of galaxies at all masses and radii below, on, and above the SFMS are similar in both normalization and shape. Most noteworthy, massive galaxies with M_*>10^10.5Msun, which have fallen below the SFMS due to ongoing quenching, exhibit a clear central SFR suppression, in both TNG50 and 3D-HST. In TNG this inside-out quenching is due to the supermassive black hole (SMBH) feedback model operating at low accretion rates. In contrast, the original Illustris simulation, without this same physical SMBH mechanism, does not reproduce the central SFR profile suppression seen in data. The observed sSFR profiles provide support for the TNG quenching mechanism and how it affects gas on kiloparsec scales in the centers of galaxies.
Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionisation emission line regions (LIERs) in local galaxies result from photoionisation by hot evolved stars, not active galactic nuclei. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies respectively. cLIERs are late type galaxies located around the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionised gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.
We present the new TNG50 cosmological, magnetohydrodynamical simulation -- the third and final volume of the IllustrisTNG project. This simulation occupies a unique combination of large volume and high resolution, with a 50 Mpc box sampled by 2160^3 gas cells (baryon mass of 8x10^4 Msun). The median spatial resolution of star-forming ISM gas is ~100-140 parsecs. This resolution approaches or exceeds that of modern zoom simulations of individual massive galaxies, while the volume contains ~20,000 resolved galaxies with M*>10^7 Msun. Herein we show first results from TNG50, focusing on galactic outflows driven by supernovae as well as supermassive black hole feedback. We find that the outflow mass loading is a non-monotonic function of galaxy stellar mass, turning over and rising rapidly above 10^10.5 Msun due to the action of the central black hole. Outflow velocity increases with stellar mass, and at fixed mass is faster at higher redshift. The TNG model can produce high velocity, multi-phase outflows which include cool, dense components. These outflows reach speeds in excess of 3000 km/s out to 20 kpc with an ejective, BH-driven origin. Critically, we show how the relative simplicity of model inputs (and scalings) at the injection scale produces complex behavior at galactic and halo scales. For example, despite isotropic wind launching, outflows exhibit natural collimation and an emergent bipolarity. Furthermore, galaxies above the star-forming main sequence drive faster outflows, although this correlation inverts at high mass with the onset of quenching, whereby low luminosity, slowly accreting, massive black holes drive the strongest outflows.
Bars inhabit the majority of local-Universe disk galaxies and may be important drivers of galaxy evolution through the redistribution of gas and angular momentum within disks. We investigate the star formation and gas properties of bars in galaxies spanning a wide range of masses, environments, and star formation rates using the MaNGA galaxy survey. Using a robustly-defined sample of 684 barred galaxies, we find that fractional (or scaled) bar length correlates with the hosts offset from the star-formation main sequence. Considering the morphology of the H$alpha$ emission we separate barred galaxies into different categories, including barred, ringed, and central configurations, together with H$alpha$ detected at the ends of a bar. We find that only low-mass galaxies host star formation along their bars, and that this is located predominantly at the leading edge of the bar itself. Our results are supported by recent simulations of massive galaxies, which show that the position of star formation within a bar is regulated by a combination of shear forces, turbulence and gas flows. We conclude that the physical properties of a bar are mostly governed by the existing stellar mass of the host galaxy, but that they also play an important role in the galaxys ongoing star formation.