No Arabic abstract
The SARS-CoV-2 outbreak changed the everyday life of almost all the people over the world.Currently, we are facing with the problem of containing the spread of the virus both using the more effective forced lockdown, which has the drawback of slowing down the economy of the involved countries, and by identifying and isolating the positive individuals, which, instead, is an hard task in general due to the lack of information. For this specific disease, the identificato of the infected is particularly challenging since there exists cathegories, namely the asymptomatics, who are positive and potentially contagious, but do not show any of the symptoms of SARS-CoV-2. Until the developement and distribution of a vaccine is not yet ready, we need to design ways of selecting those individuals which are most likely infected, given the limited amount of tests which are available each day. In this paper, we make use of available data collected by the so called contact tracing apps to develop an algorithm, namely PPTO, that identifies those individuals that are most likely positive and, therefore, should be tested. While in the past these analysis have been conducted by centralized algorithms, requiring that all the app users data are gathered in a single database, our protocol is able to work on a device level, by exploiting the communication of anonymized information to other devices.
We consider a resource allocation problem involving a large number of agents with individual constraints subject to privacy, and a central operator whose objective is to optimizing a global, possibly non-convex, cost while satisfying the agentsc onstraints. We focus on the practical case of the management of energy consumption flexibilities by the operator of a microgrid. This paper provides a privacy-preserving algorithm that does compute the optimal allocation of resources, avoiding each agent to reveal her private information (constraints and individual solution profile) neither to the central operator nor to a third party. Our method relies on an aggregation procedure: we maintain a global allocation of resources, and gradually disaggregate this allocation to enforce the satisfaction of private contraints, by a protocol involving the generation of polyhedral cuts and secure multiparty computations (SMC). To obtain these cuts, we use an alternate projections method `a la Von Neumann, which is implemented locally by each agent, preserving her privacy needs. Our theoretical and numerical results show that the method scales well as the number of agents gets large, and thus can be used to solve the allocation problem in high dimension, while addressing privacy issues.
The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented health crisis for the global. Digital contact tracing, as a transmission intervention measure, has shown its effectiveness on pandemic control. Despite intensive research on digital contact tracing, existing solutions can hardly meet users requirements on privacy and convenience. In this paper, we propose BU-Trace, a novel permissionless mobile system for privacy-preserving intelligent contact tracing based on QR code and NFC technologies. First, a user study is conducted to investigate and quantify the user acceptance of a mobile contact tracing system. Second, a decentralized system is proposed to enable contact tracing while protecting user privacy. Third, an intelligent behavior detection algorithm is designed to ease the use of our system. We implement BU-Trace and conduct extensive experiments in several real-world scenarios. The experimental results show that BU-Trace achieves a privacy-preserving and intelligent mobile system for contact tracing without requesting location or other privacy-related permissions.
An increasing number of sensors on mobile, Internet of things (IoT), and wearable devices generate time-series measurements of physical activities. Though access to the sensory data is critical to the success of many beneficial applications such as health monitoring or activity recognition, a wide range of potentially sensitive information about the individuals can also be discovered through access to sensory data and this cannot easily be protected using traditional privacy approaches. In this paper, we propose a privacy-preserving sensing framework for managing access to time-series data in order to provide utility while protecting individuals privacy. We introduce Replacement AutoEncoder, a novel algorithm which learns how to transform discriminative features of data that correspond to sensitive inferences, into some features that have been more observed in non-sensitive inferences, to protect users privacy. This efficiency is achieved by defining a user-customized objective function for deep autoencoders. Our replacement method will not only eliminate the possibility of recognizing sensitive inferences, it also eliminates the possibility of detecting the occurrence of them. That is the main weakness of other approaches such as filtering or randomization. We evaluate the efficacy of the algorithm with an activity recognition task in a multi-sensing environment using extensive experiments on three benchmark datasets. We show that it can retain the recognition accuracy of state-of-the-art techniques while simultaneously preserving the privacy of sensitive information. Finally, we utilize the GANs for detecting the occurrence of replacement, after releasing data, and show that this can be done only if the adversarial network is trained on the users original data.
Federated learning enables a large number of clients to participate in learning a shared model while maintaining the training data stored in each client, which protects data privacy and security. Till now, federated learning frameworks are built in a centralized way, in which a central client is needed for collecting and distributing information from every other client. This not only leads to high communication pressure at the central client, but also renders the central client highly vulnerable to failure and attack. Here we propose a principled decentralized federated learning algorithm (DeFed), which removes the central client in the classical Federated Averaging (FedAvg) setting and only relies information transmission between clients and their local neighbors. The proposed DeFed algorithm is proven to reach the global minimum with a convergence rate of $O(1/T)$ when the loss function is smooth and strongly convex, where $T$ is the number of iterations in gradient descent. Finally, the proposed algorithm has been applied to a number of toy examples to demonstrate its effectiveness.
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.