It is proved the generalization of Toponogov theorem about the length of the curve in two-dimensional Riemannian manifolds in the case of two-dimensional Alexandrov spaces.
In this paper, we consider a new length preserving curve flow for convex curves in the plane. We show that the global flow exists, the area of the region bounded by the evolving curve is increasing, and the evolving curve converges to the circle in C-infinity topology as t goes to infinity.
In this note, we estimate the upper bound of volume of closed positively or nonnegatively curved Alexandrov space $X$ with strictly convex boundary. We also discuss the equality case. In particular, the Boundary Conjecture holds when the volume upper bound is achieved. Our theorem also can be applied to Riemannian manifolds with non-smooth boundary, which generalizes Heintze and Karchers classical volume comparison theorem. Our main tool is the gradient flow of semi-concave functions.
We show that any initial closed curve suitably close to a circle flows under length-constrained curve diffusion to a round circle in infinite time with exponential convergence. We provide an estimate on the total length of time for which such curves are not strictly convex. We further show that there are no closed translating solutions to the flow and that the only closed rotators are circles.
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k$-th mean curvatures with $k=1,cdots,n$, and positive powers of $p$-th power sums $S_p$ with $p>0$. We prove that if the initial hypersurface $M_0$ is smooth and closed and has positive sectional curvatures, then the solution $M_t$ of the flow has positive sectional curvature for any time $t>0$, exists for all time and converges to a geodesic sphere exponentially in the smooth topology. The convergence result can be used to show that certain Alexandrov-Fenchel quermassintegral inequalities, known previously for horospherically convex hypersurfaces, also hold under the weaker condition of positive sectional curvature. In the second part of this paper, we study curvature flows for strictly horospherically convex hypersurfaces in hyperbolic space with speed given by a smooth, symmetric, increasing and homogeneous degree one function $f$ of the shifted principal curvatures $lambda_i=kappa_i-1$, plus a global term chosen to impose a constraint on the quermassintegrals of the enclosed domain, where $f$ is assumed to satisfy a certain condition on the second derivatives. We prove that if the initial hypersurface is smooth, closed and strictly horospherically convex, then the solution of the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology. As applications of the convergence result, we prove a new rigidity theorem on smooth closed Weingarten hypersurfaces in hyperbolic space, and a new class of Alexandrov-Fenchel type inequalities for smooth horospherically convex hypersurfaces in hyperbolic space.
We give a condition under which the findings of the paper cited above work well and determine the surfaces that were not considered before. In this paper, we show that a parallel mean curvature surface of a general type in a complex two-dimensional complex space form depends on one real-valued harmonic function on the surface and five real constants if the ambient space is not flat, the mean curvature vector does not vanish, and the Kaehler angle is not constant.