Do you want to publish a course? Click here

Insights on pion production mechanism and symmetry energy at high density

95   0   0.0 ( 0 )
 Added by Yingxun Zhang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The $NDeltato NN$ cross sections, which take into account the $Delta$-mass dependence of M-matrix and momentum $p_{NDelta}$, are applied on the calculation of pion production within the framework of the UrQMD model. Our study shows that UrQMD calculations with the $Delta$-mass dependent $NDeltato NN$ cross sections enhance the pion multiplicities and decrease the $pi^-/pi^+$ ratios. By analyzing the time evolution of the pion production rate and the density in the overlapped region for Au+Au at the beam energy of 0.4A GeV, we find that the pion multiplicity probes the symmetry energy in the region of 1-2 times normal density. The process of pion production in the reaction is tracked including the loops of $NNleftrightarrow NDelta$ and $Deltaleftrightarrow Npi$, our calculations show that the sensitivity of $pi^-/pi^+$ to symmetry energy is weakened after 4-5 N-$Delta$-$pi$ loops in the pion production path, while the $pi^{-}/pi^{+}$ ratio in reactions at near threshold energies remains its sensitivity to the symmetry energy. By comparing the calculations to the FOPI data, we obtain a model dependent conclusion on the symmetry energy and the symmetry energy at two times normal density is $S(2rho_0)$=38-73 MeV within $1sigma$ uncertainties. Under the constraints of tidal deformability and maximum mass of neutron star, the symmetry energy at two times normal density is reduced to $48-58$ MeV and slope of symmetry energy $L=54-81$ MeV, and it is consistent with the constraints from ASY-EOS flow data.



rate research

Read More

We show that the notion of partial dynamical symmetry is robust and founded on a microscopic many-body theory of nuclei. Based on the universal energy density functional framework, a general quantal boson Hamiltonian is derived and shown to have essentially the same spectroscopic character as that predicted by the partial SU(3) symmetry. The principal conclusion holds in two representative classes of energy density functionals: nonrelativistic and relativistic. The analysis is illustrated in application to the axially-deformed nucleus $^{168}$Er.
103 - G. Jhang , J. Estee , J. Barney 2020
In the past two decades, pions created in the high density regions of heavy ion collisions have been predicted to be sensitive at high densities to the symmetry energy term in the nuclear equation of state, a property that is key to our understanding of neutron stars. In a new experiment designed to study the symmetry energy, the multiplicities of negatively and positively charged pions have been measured with high accuracy for central $^{132}$Sn+$^{124}$Sn, $^{112}$Sn+$^{124}$Sn, and $^{108}$Sn+$^{112}$Sn collisions at $E/A=270~mathrm{MeV}$ with the S$pi$RIT Time Projection Chamber. While the uncertainties of individual pion multiplicities are measured to 4%, those of the charged pion multiplicity ratios are measured to 2%. We compare these data to predictions from seven major transport models. The calculations reproduce qualitatively the dependence of the multiplicities and their ratios on the total neutron to proton number in the colliding systems. However, the predictions of the transport models from different codes differ too much to allow extraction of reliable constraints on the symmetry energy from the data. This finding may explain previous contradictory conclusions on symmetry energy constraints obtained from pion data in Au+Au system. These new results call for better understanding of the differences among transport codes, and new observables that are more sensitive to the density dependence of the symmetry energy.
154 - T. Leitner , O. Buss , U. Mosel 2009
We investigate charged and neutral current neutrino induced incoherent pion production off nuclei at MiniBooNE and K2K energies within the GiBUU model. We assume impulse approximation and treat the nucleus as a local Fermi gas of nucleons bound in a mean-field potential. In-medium spectral functions are also taken into account. The outcome of the initial neutrino nucleon reaction undergoes complex hadronic final state interactions. We present results for neutral current pi^0 and charged current pi^+ production and compare to MiniBooNE and K2K data.
156 - A.M.Bernstein 2013
Small angle electron scattering with intense electron beams opens up the possibility of performing almost real photon induced reactions with thin, polarized hydrogen and few body targets, allowing for the detection of low energy charged particles.This promises to be much more effective than conventional photon tagging techniques. For photo-pion reactions some fundamental new possibilities include: tests of charge symmetry in the N-N system by measurement of the neutron-neutron scattering length $a_{nn}$ in the $gamma D rightarrow pi^{+} nn$ reaction; tests of isospin breaking due to the mass difference of the up and down quarks; measurements with polarized targets are sensitive to $pi$N phase shifts and will test the validity of the Fermi-Watson (final state interaction) theorem. All of these experiments will test the accuracy and energy region of validity of chiral effective theories.
A production mechanism of highly excited nuclei formed in violent collisions in the Fermi energy domain is investigated. The collision of two nuclei is decomposed into several stages which are treated separately. Simplified exciton concept is used for the description of pre-equilibrium emission. A modified spectator-participant scenario is used where motion along classical Coulomb trajectories is assumed. The participant and one of the spectator zones undergo incomplete fusion. Excitation energies of both cold and hot fragment are determined. Results of the calculation are compared to recent experimental data in the Fermi energy domain. Data on hot projectile-like, mid-velocity and fusion-like sources are described consistently. Geometric aspects of pre-equilibrium emission are revealed. Explanations to previously unexplained experimental phenomena are given. Energy deposited into non-thermal degrees of freedom is estimated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا