Do you want to publish a course? Click here

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

160   0   0.0 ( 0 )
 Added by Binghong Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Retrosynthetic planning is a critical task in organic chemistry which identifies a series of reactions that can lead to the synthesis of a target product. The vast number of possible chemical transformations makes the size of the search space very big, and retrosynthetic planning is challenging even for experienced chemists. However, existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality. In this paper, we propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently. It maintains the search as an AND-OR tree, and learns a neural search bias with off-policy data. Then guided by this neural network, it performs best-first search efficiently during new planning episodes. Experiments on benchmark USPTO datasets show that, our proposed method outperforms existing state-of-the-art with respect to both the success rate and solution quality, while being more efficient at the same time.

rate research

Read More

Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule. Recently, search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs) to expand their candidate solutions, i.e., adding new reactions to reaction pathways. However, the existing works on this line are suboptimal; the retrosynthetic planning problem requires the reaction pathways to be (a) represented by real-world reactions and (b) executable using building block molecules, yet the DNNs expand reaction pathways without fully incorporating such requirements. Motivated by this, we propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties. Our main idea is based on a self-improving procedure that trains the model to imitate successful trajectories found by itself. We also propose a novel reaction augmentation scheme based on a forward reaction model. Our experiments demonstrate that our scheme significantly improves the success rate of solving the retrosynthetic problem from 86.84% to 96.32% while maintaining the performance of DNN for predicting valid reactions.
93 - Yi Wu , Yuxin Wu , Aviv Tamar 2018
Building deep reinforcement learning agents that can generalize and adapt to unseen environments remains a fundamental challenge for AI. This paper describes progresses on this challenge in the context of man-made environments, which are visually diverse but contain intrinsic semantic regularities. We propose a hybrid model-based and model-free approach, LEArning and Planning with Semantics (LEAPS), consisting of a multi-target sub-policy that acts on visual inputs, and a Bayesian model over semantic structures. When placed in an unseen environment, the agent plans with the semantic model to make high-level decisions, proposes the next sub-target for the sub-policy to execute, and updates the semantic model based on new observations. We perform experiments in visual navigation tasks using House3D, a 3D environment that contains diverse human-designed indoor scenes with real-world objects. LEAPS outperforms strong baselines that do not explicitly plan using the semantic content.
In principle, reinforcement learning and policy search methods can enable robots to learn highly complex and general skills that may allow them to function amid the complexity and diversity of the real world. However, training a policy that generalizes well across a wide range of real-world conditions requires far greater quantity and diversity of experience than is practical to collect with a single robot. Fortunately, it is possible for multiple robots to share their experience with one another, and thereby, learn a policy collectively. In this work, we explore distributed and asynchronous policy learning as a means to achieve generalization and improved training times on challenging, real-world manipulation tasks. We propose a distributed and asynchronous version of Guided Policy Search and use it to demonstrate collective policy learning on a vision-based door opening task using four robots. We show that it achieves better generalization, utilization, and training times than the single robot alternative.
Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as expert-crafted architectures. While most existing works aim at finding architectures that optimize the prediction accuracy, these architectures may have complexity and is therefore not suitable being deployed on certain computing environment (e.g., with limited power budgets). We propose MONAS, a framework for Multi-Objective Neural Architectural Search that employs reward functions considering both prediction accuracy and other important objectives (e.g., power consumption) when searching for neural network architectures. Experimental results showed that, compared to the state-ofthe-arts, models found by MONAS achieve comparable or better classification accuracy on computer vision applications, while satisfying the additional objectives such as peak power.
Reinforcement Learning (RL) has made remarkable achievements, but it still suffers from inadequate exploration strategies, sparse reward signals, and deceptive reward functions. These problems motivate the need for a more efficient and directed exploration. For solving this, a Population-guided Novelty Search (PNS) parallel learning method is proposed. In PNS, the population is divided into multiple sub-populations, each of which has one chief agent and several exploring agents. The role of the chief agent is to evaluate the policies learned by exploring agents and to share the optimal policy with all sub-populations. The role of exploring agents is to learn their policies in collaboration with the guidance of the optimal policy and, simultaneously, upload their policies to the chief agent. To balance exploration and exploitation, the Novelty Search (NS) is employed in chief agents to encourage policies with high novelty while maximizing per-episode performance. The introduction of sub-populations and NS mechanisms promote directed exploration and enables better policy search. In the numerical experiment section, the proposed scheme is applied to the twin delayed deep deterministic (TD3) policy gradient algorithm, and the effectiveness of PNS to promote exploration and improve performance in both continuous control domains and discrete control domains is demonstrated. Notably, the proposed method achieves rewards that far exceed the SOTA methods in Delayed MoJoCo environments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا