Do you want to publish a course? Click here

Experimental constraint on axion-like particle coupling over seven orders of magnitude in mass

371   0   0.0 ( 0 )
 Added by Tanya Roussy
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF$^+$ EDM oscillates in time due to interactions with candidate dark matter axion-like particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range $10^{-22}-10^{-15}$ eV. This is the first laboratory constraint on the ALP-gluon coupling in the $10^{-17}-10^{-15}$ eV range, and the first laboratory constraint to properly account for the stochastic nature of the ALP field.



rate research

Read More

126 - Wei Cheng , Tao Qian , Qing Yu 2021
In this paper, we investigate the Axion-like Particle inflation by applying the multi-nature inflation model, where the end of inflation is achieved through the phase transition (PT). The events of PT should not be less than $200$, which results in the free parameter $ngeq404$. Under the latest CMB restrictions, we found that the inflation energy is fixed at $10^{15} rm{GeV}$. Then, we deeply discussed the corresponding stochastic background of the primordial gravitational wave (GW) during inflation. We study the two kinds of $n$ cases, i.e., $n=404, 2000$. We observe that the magnitude of $n$ is negligible for the physical observations, such as $n_s$, $r$, $Lambda$, and $Omega_{rm{GW}}h^2$. In the low-frequency regions, the GW is dominated by the quantum fluctuations, and this GW can be detected by Decigo at $10^{-1}~rm{Hz}$. However, GW generated by PT dominates the high-frequency regions, which is expected to be detected by future 3DSR detector.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
118 - Wei Cheng , Ligong Bian , 2021
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more general. The $n_1$ build the connection between GNI and other ALP inflation model, $n_2$ controls the inflaton mass. After considering the cosmic microwave background and other cosmological observation limits, the model can realize small-field inflation with a wide mass range, and the ALP inflaton considering here can serve as the DM candidate for certain parameter spaces.
Cosmological models in which dark matter consists of cold elementary particles predict that the dark halo population should extend to masses many orders of magnitude below those at which galaxies can form. Here we report a cosmological simulation of the formation of present-day haloes over the full range of observed halo masses (20 orders of magnitude) when dark matter is assumed to be in the form of weakly interacting massive particles of mass approximately 100 gigaelectronvolts. The simulation has a full dynamic range of 30 orders of magnitude in mass and resolves the internal structure of hundreds of Earth-mass haloes in as much detail as it does for hundreds of rich galaxy clusters. We find that halo density profiles are universal over the entire mass range and are well described by simple two-parameter fitting formulae. Halo mass and concentration are tightly related in a way that depends on cosmology and on the nature of the dark matter. For a fixed mass, the concentration is independent of the local environment for haloes less massive than those of typical galaxies. Haloes over the mass range of 10^3 to 10^11 solar masses contribute about equally (per logarithmic interval) to the luminosity produced by dark matter annihilation, which we find to be smaller than all previous estimates by factors ranging up to one thousand.
Axion-like particles with masses in the keV-GeV range have a profound impact on the cosmological evolution of our Universe, in particular on the abundance of light elements produced during Big Bang Nucleosynthesis. The resulting limits are complementary to searches in the laboratory and provide valuable additional information regarding the validity of a given point in parameter space. A potential drawback is that altering the cosmological history may potentially weaken or even fully invalidate these bounds. The main objective of this article is therefore to evaluate the robustness of cosmological constraints on axion-like particles in the keV-GeV region, allowing for various additional effects which may weaken the bounds of the standard scenario. Employing the latest determinations of the primordial abundances as well as information from the cosmic microwave background we find that while bounds can indeed be weakened, very relevant robust constraints remain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا