Do you want to publish a course? Click here

Queues in a random environment

94   0   0.0 ( 0 )
 Added by Karsten Kruse
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environments state and the movements of the environment depend on the status of the queues (bi-directional interaction). The structure of the environment is constructed in a way to encompass various models from the recent Operation Research literature, where a queue is coupled e.g. with an inventory or with reliability issues. With a Markovian joint queueing-environment process we prove separability for a large class of such interactive systems, i.e. the steady state distribution is of product form and explicitly given: The queue and the environment processes decouple asymptotically and in steady state. For non-separable systems we develop ergodicity criteria via Lyapunov functions. By examples we show principles for bounding throughputs of non-separable systems by throughputs of two separable systems as upper and lower bound.



rate research

Read More

In this paper, we consider a $G_t/G_t/infty$ infinite server queueing model in a random environment. More specifically, the arrival rate in our server is modeled as a highly fluctuating stochastic process, which arguably takes into account some small time scale variations often observed in practice. We show a homogenization property for this system, which yields an approximation by a $M_t/G_t/infty$ queue with modified parameters. Our limiting results include the description of the number of active servers, the total accumulated input and the solution of the storage equation. Hence in the fast oscillatory context under consideration, we show how the queuing system in a random environment can be approximated by a more classical Markovian system.
We study infinite server queues driven by Cox processes in a fast oscillatory random environment. While exact performance analysis is difficult, we establish diffusion approximations to the (re-scaled) number-in-system process by proving functional central limit theorems (FCLTs) using a stochastic homogenization framework. This framework permits the establishment of quenched and annealed limits in a unified manner. At the quantitative level, we identity two parameter regimes, termed subcritical and supercritical indicating the relative dominance between the two underlying stochasticities driving our system: the randomness in the arrival intensity and that in the serivce times. We show that while quenched FCLTs can only be established in the subcritical regime, annealed FCLTs can be proved in both cases. Furthermore, the limiting diffusions in the annealed FCLTs display qualitatively different diffusivity properties in the two regimes, even though the stochastic primitives are identical. In particular, when the service time distribution is heavy-tailed, the diffusion is sub- and super-diffusive in the sub- and super-critical cases. The results illustrate intricate interactions between the underlying driving forces of our system.
A Markovian single-server queue is studied in an interactive random environment. The arrival and service rates of the queue depend on the environment, while the transition dynamics of the random environment depends on the queue length. We consider in detail two types of Markov random environments: a pure jump process and a reflected jump-diffusion. In both cases, the joint dynamics is constructed so that the stationary distribution can be explicitly found in a simple form (weighted geometric). We also derive an explicit estimate for exponential rate of convergence to the stationary distribution via coupling.
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported by a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity we consider a nearest neighbor random walk on the set of integers having jumps $pm 1$ with probability $1/2$ at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2018+) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.
In this paper, we analyse a single server polling model with two queues. Customers arrive at the two queues according to two independent Poisson processes. There is a single server that serves both queues with generally distributed service times. The server spends an exponentially distributed amount of time in each queue. After the completion of this residing time, the server instantaneously switches to the other queue, i.e., there is no switch-over time. For this polling model we derive the steady-state marginal workload distribution, as well as heavy traffic and heavy tail asymptotic results. Furthermore, we also calculate the joint queue length distribution for the special case of exponentially distributed service times using singular perturbation analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا