Do you want to publish a course? Click here

Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale Multi-phase CT Data via Deep Dynamic Texture Learning

145   0   0.0 ( 0 )
 Added by Yuankai Huo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Non-invasive radiological-based lesion characterization and identification, e.g., to differentiate cancer subtypes, has long been a major aim to enhance oncological diagnosis and treatment procedures. Here we study a specific population of human subjects, with the hope of reducing the need for invasive surgical biopsies of liver cancer patients, which can cause many harmful side-effects. To this end, we propose a fully-automated and multi-stage liver tumor characterization framework designed for dynamic contrast computed tomography (CT). Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization. Our main contributions are that, (1) we propose a 3D non-isotropic anchor-free detection method for liver lesions; (2) we present and validate spatially adaptivedeep texture (SaDT) learning, which allows for more precise characterization of liver lesions; (3) using a semi-automatic process, we bootstrap off of 200 gold standard annotations to curate another 1001 patients. Experimental evaluations demonstrate that our new data curation strategy, combined with the SaDT deep dynamic texture analysis, can effectively improve the mean F1 scores by >8.6% compared with baselines, in differentiating four major liver lesion types. Our F1 score of (hepatocellular carcinoma versus remaining subclasses) is 0.763, which is higher than reported human observer performance using dynamic CT and comparable to an advanced magnetic resonance imagery protocol. Apart from demonstrating the benefits of our data curation approach and physician-inspired workflow, these results also indicate that analyzing texture features, instead of standard object-based analysis, is a promising strategy for lesion differentiation.

rate research

Read More

230 - Yulei Niu , Zhiwu Lu , Ji-Rong Wen 2017
Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.
145 - Pengbo Liu , Hu Han , Yuanqi Du 2020
Purpose: Pelvic bone segmentation in CT has always been an essential step in clinical diagnosis and surgery planning of pelvic bone diseases. Existing methods for pelvic bone segmentation are either hand-crafted or semi-automatic and achieve limited accuracy when dealing with image appearance variations due to the multi-site domain shift, the presence of contrasted vessels, coprolith and chyme, bone fractures, low dose, metal artifacts, etc. Due to the lack of a large-scale pelvic CT dataset with annotations, deep learning methods are not fully explored. Methods: In this paper, we aim to bridge the data gap by curating a large pelvic CT dataset pooled from multiple sources and different manufacturers, including 1, 184 CT volumes and over 320, 000 slices with different resolutions and a variety of the above-mentioned appearance variations. Then we propose for the first time, to the best of our knowledge, to learn a deep multi-class network for segmenting lumbar spine, sacrum, left hip, and right hip, from multiple-domain images simultaneously to obtain more effective and robust feature representations. Finally, we introduce a post-processing tool based on the signed distance function (SDF) to eliminate false predictions while retaining correctly predicted bone fragments. Results: Extensive experiments on our dataset demonstrate the effectiveness of our automatic method, achieving an average Dice of 0.987 for a metal-free volume. SDF post-processor yields a decrease of 10.5% in hausdorff distance by maintaining important bone fragments in post-processing phase. Conclusion: We believe this large-scale dataset will promote the development of the whole community and plan to open source the images, annotations, codes, and trained baseline models at https://github.com/ICT-MIRACLE-lab/CTPelvic1K.
50 - Kan Wu , Guanbin Li , Haofeng Li 2019
The collection of internet images has been growing in an astonishing speed. It is undoubted that these images contain rich visual information that can be useful in many applications, such as visual media creation and data-driven image synthesis. In this paper, we focus on the methodologies for building a visual object database from a collection of internet images. Such database is built to contain a large number of high-quality visual objects that can help with various data-driven image applications. Our method is based on dense proposal generation and objectness-based re-ranking. A novel deep convolutional neural network is designed for the inference of proposal objectness, the probability of a proposal containing optimally-located foreground object. In our work, the objectness is quantitatively measured in regard of completeness and fullness, reflecting two complementary features of an optimal proposal: a complete foreground and relatively small background. Our experiments indicate that object proposals re-ranked according to the output of our network generally achieve higher performance than those produced by other state-of-the-art methods. As a concrete example, a database of over 1.2 million visual objects has been built using the proposed method, and has been successfully used in various data-driven image applications.
In medical imaging, organ/pathology segmentation models trained on current publicly available and fully-annotated datasets usually do not well-represent the heterogeneous modalities, phases, pathologies, and clinical scenarios encountered in real environments. On the other hand, there are tremendous amounts of unlabelled patient imaging scans stored by many modern clinical centers. In this work, we present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe), which only requires a small labeled cohort of single phase imaging data to adapt to any unlabeled cohort of heterogenous multi-phase data with possibly new clinical scenarios and pathologies. To do this, we propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling. We also introduce co-heterogeneous training, which is a novel integration of co-training and hetero modality learning. We have evaluated CHASe using a clinically comprehensive and challenging dataset of multi-phase computed tomography (CT) imaging studies (1147 patients and 4577 3D volumes). Compared to previous state-of-the-art baselines, CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$, depending on the phase combinations: e.g., from $84.6%$ to $94.0%$ on non-contrast CTs.
107 - Yingda Xia , Qihang Yu , Wei Shen 2020
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population. Screening for PDACs in dynamic contrast-enhanced CT is beneficial for early diagnosis. In this paper, we investigate the problem of automated detecting PDACs in multi-phase (arterial and venous) CT scans. Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture, making it difficult to combine cross-phase information seamlessly. We study multiple phase alignment strategies, i.e., early alignment (image registration), late alignment (high-level feature registration), and slow alignment (multi-level feature registration), and suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection. We provide an extensive empirical evaluation on two PDAC datasets and show that the proposed alignment ensemble significantly outperforms previous state-of-the-art approaches, illustrating the strong potential for clinical use.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا