Do you want to publish a course? Click here

Lookahead-Bounded Q-Learning

70   0   0.0 ( 0 )
 Added by Ibrahim El Shar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce the lookahead-bounded Q-learning (LBQL) algorithm, a new, provably convergent variant of Q-learning that seeks to improve the performance of standard Q-learning in stochastic environments through the use of ``lookahead upper and lower bounds. To do this, LBQL employs previously collected experience and each iterations state-action values as dual feasible penalties to construct a sequence of sampled information relaxation problems. The solutions to these problems provide estimated upper and lower bounds on the optimal value, which we track via stochastic approximation. These quantities are then used to constrain the iterates to stay within the bounds at every iteration. Numerical experiments on benchmark problems show that LBQL exhibits faster convergence and more robustness to hyperparameters when compared to standard Q-learning and several related techniques. Our approach is particularly appealing in problems that require expensive simulations or real-world interactions.



rate research

Read More

Although Q-learning is one of the most successful algorithms for finding the best action-value function (and thus the optimal policy) in reinforcement learning, its implementation often suffers from large overestimation of Q-function values incurred by random sampling. The double Q-learning algorithm proposed in~citet{hasselt2010double} overcomes such an overestimation issue by randomly switching the update between two Q-estimators, and has thus gained significant popularity in practice. However, the theoretical understanding of double Q-learning is rather limited. So far only the asymptotic convergence has been established, which does not characterize how fast the algorithm converges. In this paper, we provide the first non-asymptotic (i.e., finite-time) analysis for double Q-learning. We show that both synchronous and asynchronous double Q-learning are guaranteed to converge to an $epsilon$-accurate neighborhood of the global optimum by taking $tilde{Omega}left(left( frac{1}{(1-gamma)^6epsilon^2}right)^{frac{1}{omega}} +left(frac{1}{1-gamma}right)^{frac{1}{1-omega}}right)$ iterations, where $omegain(0,1)$ is the decay parameter of the learning rate, and $gamma$ is the discount factor. Our analysis develops novel techniques to derive finite-time bounds on the difference between two inter-connected stochastic processes, which is new to the literature of stochastic approximation.
117 - Yunwen Lei , Ting Hu , Guiying Li 2019
Stochastic gradient descent (SGD) is a popular and efficient method with wide applications in training deep neural nets and other nonconvex models. While the behavior of SGD is well understood in the convex learning setting, the existing theoretical results for SGD applied to nonconvex objective functions are far from mature. For example, existing results require to impose a nontrivial assumption on the uniform boundedness of gradients for all iterates encountered in the learning process, which is hard to verify in practical implementations. In this paper, we establish a rigorous theoretical foundation for SGD in nonconvex learning by showing that this boundedness assumption can be removed without affecting convergence rates. In particular, we establish sufficient conditions for almost sure convergence as well as optimal convergence rates for SGD applied to both general nonconvex objective functions and gradient-dominated objective functions. A linear convergence is further derived in the case with zero variances.
128 - Haotian Gu , Xin Guo , Xiaoli Wei 2020
Multi-agent reinforcement learning (MARL), despite its popularity and empirical success, suffers from the curse of dimensionality. This paper builds the mathematical framework to approximate cooperative MARL by a mean-field control (MFC) approach, and shows that the approximation error is of $mathcal{O}(frac{1}{sqrt{N}})$. By establishing an appropriate form of the dynamic programming principle for both the value function and the Q function, it proposes a model-free kernel-based Q-learning algorithm (MFC-K-Q), which is shown to have a linear convergence rate for the MFC problem, the first of its kind in the MARL literature. It further establishes that the convergence rate and the sample complexity of MFC-K-Q are independent of the number of agents $N$, which provides an $mathcal{O}(frac{1}{sqrt{N}})$ approximation to the MARL problem with $N$ agents in the learning environment. Empirical studies for the network traffic congestion problem demonstrate that MFC-K-Q outperforms existing MARL algorithms when $N$ is large, for instance when $N>50$.
The vast majority of successful deep neural networks are trained using variants of stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly categorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad and Adam, and (2) accelerated schemes, such as heavy-ball and Nesterov momentum. In this paper, we propose a new optimization algorithm, Lookahead, that is orthogonal to these previous approaches and iteratively updates two sets of weights. Intuitively, the algorithm chooses a search direction by looking ahead at the sequence of fast weights generated by another optimizer. We show that Lookahead improves the learning stability and lowers the variance of its inner optimizer with negligible computation and memory cost. We empirically demonstrate Lookahead can significantly improve the performance of SGD and Adam, even with their default hyperparameter settings on ImageNet, CIFAR-10/100, neural machine translation, and Penn Treebank.
Value-based reinforcement learning (RL) methods like Q-learning have shown success in a variety of domains. One challenge in applying Q-learning to continuous-action RL problems, however, is the continuous action maximization (max-Q) required for optimal Bellman backup. In this work, we develop CAQL, a (class of) algorithm(s) for continuous-action Q-learning that can use several plug-and-play optimizers for the max-Q problem. Leveraging recent optimization results for deep neural networks, we show that max-Q can be solved optimally using mixed-integer programming (MIP). When the Q-function representation has sufficient power, MIP-based optimization gives rise to better policies and is more robust than approximate methods (e.g., gradient ascent, cross-entropy search). We further develop several techniques to accelerate inference in CAQL, which despite their approximate nature, perform well. We compare CAQL with state-of-the-art RL algorithms on benchmark continuous-control problems that have different degrees of action constraints and show that CAQL outperforms policy-based methods in heavily constrained environments, often dramatically.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا