No Arabic abstract
We determine thresholds $p_c$ for random site percolation on a triangular lattice for neighbourhoods containing nearest (NN), next-nearest (2NN), next-next-nearest (3NN), next-next-next-nearest (4NN) and next-next-next-next-nearest (5NN) neighbours, and their combinations forming regular hexagons (3NN+2NN+NN, 5NN+4NN+NN, 5NN+4NN+3NN+2NN, 5NN+4NN+3NN+2NN+NN). We use a fast Monte Carlo algorithm, by Newman and Ziff [M. E. J. Newman and R. M. Ziff, Physical Review E 64, 016706 (2001)], for obtaining the dependence of the largest cluster size on occupation probability. The method is combined with a method, by Bastas et al. [N. Bastas, K. Kosmidis, P. Giazitzidis, and M. Maragakis, Physical Review E 90, 062101 (2014)], of estimating thresholds from low statistics data. The estimated values of percolation thresholds are $p_c(text{4NN})=0.192410(43)$, $p_c(text{3NN+2NN})=0.232008(38)$, $p_c(text{5NN+4NN})=0.140286(5)$, $p_c(text{3NN+2NN+NN})=0.215484(19)$, $p_c(text{5NN+4NN+NN})=0.131792(58)$, $p_c(text{5NN+4NN+3NN+2NN})=0.117579(41)$, $p_c(text{5NN+4NN+3NN+2NN+NN})=0.115847(21)$. The method is tested on the standard case of site percolation on triangular lattice, where $p_c(text{NN})=p_c(text{2NN})=p_c(text{3NN})=p_c(text{5NN})=frac{1}{2}$ is recovered with five digits accuracy $p_c(text{NN})=0.500029(46)$ by averaging over one thousand lattice realisations only.
In the paper random-site percolation thresholds for simple cubic lattice with sites neighborhoods containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A recently proposed algorithm with low sampling for percolation thresholds estimation [Bastas et al., arXiv:1411.5834] is implemented for the studies of the top-bottom wrapping probability. The obtained percolation thresholds are $p_C(text{4NN})=0.31160(12)$, $p_C(text{4NN+NN})=0.15040(12)$, $p_C(text{4NN+2NN})=0.15950(12)$, $p_C(text{4NN+3NN})=0.20490(12)$, $p_C(text{4NN+2NN+NN})=0.11440(12)$, $p_C(text{4NN+3NN+NN})=0.11920(12)$, $p_C(text{4NN+3NN+2NN})=0.11330(12)$, $p_C(text{4NN+3NN+2NN+NN})=0.10000(12)$, where 3NN, 2NN, NN stands for next-next-nearest neighbors, next-nearest neighbors, and nearest neighbors, respectively. As an SC lattice with 4NN neighbors may be mapped onto two independent interpenetrated SC lattices but with two times larger lattice constant the percolation threshold $p_C$(4NN) is exactly equal to $p_C$(NN). The simplified Bastas et al. method allows for reaching uncertainty of the percolation threshold value $p_C$ similar to those obtained with classical method but ten times faster.
We determine thresholds $p_c$ for random-site percolation on a triangular lattice for all available neighborhoods containing sites from the first to the fifth coordination zones, including their complex combinations. There are 31 distinct neighbourhoods. The dependence of the value of the percolation thresholds $p_c$ on the coordination number $z$ are tested against various theoretical predictions. The newly proposed single scalar index $xi=sum_i z_ir_i^2/i$ (depending on the coordination zone number $i$, the neighbourhood coordination number $z$ and the square-distance $r^2$ to sites in $i$-th coordination zone from the central site) allows to differentiate among various neighbourhoods and relate $p_c$ to $xi$. The thresholds roughly follow a power law $p_cproptoxi^{-gamma}$ with $gammaapprox 0.710(19)$.
By means of Monte Carlo simulations, we study long-range site percolation on square and simple cubic lattices with various combinations of nearest neighbors, up to the eighth neighbors for the square lattice and the ninth neighbors for the simple cubic lattice. We find precise thresholds for 23 systems using a single-cluster growth algorithm. Site percolation on lattices with compact neighborhoods can be mapped to problems of lattice percolation of extended shapes, such as disks and spheres, and the thresholds can be related to the continuum thresholds $eta_c$ for objects of those shapes. This mapping implies $zp_{c} sim 4 eta_c = 4.51235$ in 2D and $zp_{c} sim 8 eta_c = 2.73512$ in 3D for large $z$ for circular and spherical neighborhoods respectively, where $z$ is the coordination number. Fitting our data to the form $p_c = c/(z+b)$ we find good agreement with $c = 2^d eta_c$; the constant $b$ represents a finite-$z$ correction term. We also study power-law fits of the thresholds.
As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks with Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so that the ground state at the Rokhsar-Kivelson (RK) point of the corresponding quantum dimer model on the same lattice is a short-ranged spin liquid. Using the Pfaffian method, we derive an exact form for the free energy, and we find that the entropy is 1/3 ln2 per site, regardless of the weights of the bonds. The occupation probability of every bond is 1/4 in the case of equal weights on every bond. Similar to the case of lattices formed by corner-sharing triangles (such as the kagome and squagome lattices), we find that the dimer-dimer correlation function is identically zero beyond a certain (short) distance. We find in addition that monomers are deconfined on the TKL, indicating that there is a short-ranged spin liquid phase at the RK point. We also find exact results for the ground state energy of the classical Heisenberg model. The ground state can be ferromagnetic, ferrimagnetic, locally coplanar, or locally canted, depending on the couplings. From the dimer model and the classical spin model, we derive upper bounds on the ground state energy of the quantum Heisenberg model on the TKL.