Experimental results and simulation models show that crystals might play a relevant role for the development of new generations of high-energy and high-intensity particle accelerators and might disclose innovative possibilities at existing ones. In this paper we describe the most advanced manufacturing techniques of crystals suitable for operations at ultra-high energy and ultra-high intensity particle accelerators, reporting as an example of potential applications the collimation of the particle beams circulating in the Large Hadron Collider at CERN, which will be upgraded through the addition of bent crystals in the frame of the High Luminosity Large Hadron Collider project.
Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.
Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universes volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.
Calibration of the absolute energy scale at high-energy photon (gamma-gamma, gamma-electron) colliders is discussed. The luminosity spectrum at photon colliders is broad and has a rather sharp high-energy edge, which can be used, for example, to measure the mass of the Higgs boson in the process gamma-gamma to H or masses of charged scalars by observing the cross-section threshold. In addition to the precise knowledge of the edge energy of the luminosity spectrum, it is even more important to have a way to calibrate the absolute energy scale of the detector. At first sight, Compton scattering itself provides a unique way to determine the beam energies and produce particles of known energies that could be used for detector calibration. The energy scale is given by the electron mass m_e and laser photon energy omega_0. However, this does not work at realistic photon colliders due to large nonlinear effects in Compton scattering at the conversion region (xi^2 sim 0.3). It is argued that the process gamma-electron to eZ_0 provides the best way to calibrate the energy scale of the detector, where the energy scale is given by m_Z.
A laser-Compton backscattering beam, which we call a `Laser-Electron Photon beam, was upgraded at the LEPS beamline of SPring-8. We accomplished the gains in backscattered photon beam intensities by factors of 1.5--1.8 with the injection of two adjacent laser beams or a higher power laser beam into the storage ring. The maximum energy of the photon beam was also extended from 2.4 GeV to 2.9 GeV with deep-ultraviolet lasers. The upgraded beams have been utilized for hadron photoproduction experiments at the LEPS beamline. Based on the developed methods, we plan the simultaneous injection of four high power laser beams at the LEPS2 beamline, which has been newly constructed at SPring-8. As a simulation result, we expect an order of magnitude higher intensities close to 10$^7$ sec$^{-1}$ and 10$^6$ sec$^{-1}$ for tagged photons up to 2.4 GeV and 2.9 GeV, respectively.
We discuss main issues and R&D Required for the Intensity Frontier Accelerators and therefore provide input for the 2013 APS/DPF Community Summer Study (Snowmass-2013).
A. Mazzolari
,M. Romagnoni
,E. Bagli
.
(2020)
.
"Silicon crystals for steering of high-intensity particle beams at ultra-high energy accelerators"
.
Andrea Mazzolari Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا