No Arabic abstract
When estimating the risk of a financial position with empirical data or Monte Carlo simulations via a tail-dependent law invariant risk measure such as the Conditional Value-at-Risk (CVaR), it is important to ensure the robustness of the statistical estimator particularly when the data contain noise. Kru007fatscher et al. [1] propose a new framework to examine the qualitative robustness of estimators for tail-dependent law invariant risk measures on Orlicz spaces, which is a step further from earlier work for studying the robustness of risk measurement procedures by Cont et al. [2]. In this paper, we follow the stream of research to propose a quantitative approach for verifying the statistical robustness of tail-dependent law invariant risk measures. A distinct feature of our approach is that we use the Fortet-Mourier metric to quantify the variation of the true underlying probability measure in the analysis of the discrepancy between the laws of the plug-in estimators of law invariant risk measure based on the true data and perturbed data, which enables us to derive an explicit error bound for the discrepancy when the risk functional is Lipschitz continuous with respect to a class of admissible laws. Moreover, the newly introduced notion of Lipschitz continuity allows us to examine the degree of robustness for tail-dependent risk measures. Finally, we apply our quantitative approach to some well-known risk measures to illustrate our theory.
In this paper, we show that, on classical model spaces including Orlicz spaces, every real-valued, law-invariant, coherent risk measure automatically has the Fatou property at every point whose negative part has a thin tail.
We provide a variety of results for (quasi)convex, law-invariant functionals defined on a general Orlicz space, which extend well-known results in the setting of bounded random variables. First, we show that Delbaens representation of convex functionals with the Fatou property, which fails in a general Orlicz space, can be always achieved under the assumption of law-invariance. Second, we identify the range of Orlicz spaces where the characterization of the Fatou property in terms of norm lower semicontinuity by Jouini, Schachermayer and Touzi continues to hold. Third, we extend Kusuokas representation to a general Orlicz space. Finally, we prove a version of the extension result by Filipovi{c} and Svindland by replacing norm lower semicontinuity with the (generally non-equivalent) Fatou property. Our results have natural applications to the theory of risk measures.
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency properties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
In order to evaluate the quality of the scientific research, we introduce a new family of scientific performance measures, called Scientific Research Measures (SRM). Our proposal originates from the more recent developments in the theory of risk measures and is an attempt to resolve the many problems of the existing bibliometric indices. The SRM that we introduce are based on the whole scientists citation record and are: coherent, as they share the same structural properties; flexible to fit peculiarities of different areas and seniorities; granular, as they allow a more precise comparison between scientists, and inclusive, as they comprehend several popular indices. Another key feature of our SRM is that they are planned to be calibrated to the particular scientific community. We also propose a dual formulation of this problem and explain its relevance in this context.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the well-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.