Do you want to publish a course? Click here

Minimally critical regular endomorphisms of A^N

70   0   0.0 ( 0 )
 Added by Patrick Ingram
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the dynamics of a class of endomorphisms of A^N which restricts, when N = 1, to the class of unicritical polynomials. Over the complex numbers, we obtain lower bounds on the sum of Lyapunov exponents, and a statement which generalizes the compactness of the Mandelbrot set. Over the algebraic numbers, we obtain estimates on the critical height, and over general algebraically closed fields we obtain some rigidity results for post-critically finite morphisms of this form.



rate research

Read More

129 - Patrick Ingram 2020
We study the dynamics of the map endomorphism of N-dimensional projective space defined by f(X)=AX^d, where A is a matrix and d is at least 2. When d>N^2+N+1, we show that the critical height of such a morphism is comparable to its height in moduli space, confirming a case of a natural generalization of a conjecture of Silverman.
We study ultrametric germs in one variable having an irrationally indifferent fixed point at the origin with a prescribed multiplier. We show that for many values of the multiplier, the cycles in the unit disk of the corresponding monic quadratic polynomial are optimal in the following sense: They minimize the distance to the origin among cycles of the same minimal period of normalized germs having an irrationally indifferent fixed point at the origin with the same multiplier. We also give examples of multipliers for which the corresponding quadratic polynomial does not have optimal cycles. In those cases we exhibit a higher degree polynomial such that all of its cycles are optimal. The proof of these results reveals a connection between the geometric location of periodic points of ultrametric power series and the lower ramification numbers of wildly ramified field automorphisms. We also give an extension of Sens theorem on wildly ramified field automorphisms, and a characterization of minimally ramified power series in terms of the iterative residue.
For planar ($N$+1)-body ($N$,$geq$ 2) problem with a regular $N$-polygon, under the assumption that the ($N$+1)-th body locates at the geometric center of the regular $N$-polygon, we obtain the sufficient and necessary conditions that the $N$+1 bodies can form a central configuration.
81 - Yuri G. Zarhin 2020
Let $X$ be a polarized abelian variety over a field $K$. Let $O$ be a ring with an involution that acts on $X$ and this action is compatible with the polarization. We prove that the natural action of $O$ on $(X times X^t)^4$ is compatible with a certain principal polarization.
134 - Suhua Wang , Enhui Shi , Hui Xu 2021
Let $X$ be a regular curve and $n$ be a positive integer such that for every nonempty open set $Usubset X$, there is a nonempty connected open set $Vsubset U$ with the cardinality $|partial_X(V)|leq n$. We show that if $X$ admits a sensitive action of a group $G$, then $G$ contains a free subsemigroup and the action has positive geometric entropy. As a corollary, $X$ admits no sensitive nilpotent group action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا