No Arabic abstract
The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection at collinear geometry. We observe wide scattering resonance features in both elastic and inelastic rate coefficients at collision energies below k x 10 mK. They are identified as either p- or d-wave shape resonances. We also describe the electronic potentials relevant for these non-reactive collisions, their diabatization procedure, as well as the non-adiabatic coupling between the diabatic potentials near the CIs.
Ongoing developments in ultrafast X-ray sources offer powerful new means of probing the com- plex non-adiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical in- tersections which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high level ab initio quantum dynamics simulations, we studied time-resolved X-ray absorption and photoelectron spectroscopy (TRXAS and TRXPS, respectively) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2 state. The TRXAS in particular is highly sensitive to all aspects of the ensuing dynamics. These X-ray spectroscopies provide a clear signature of the wavepacket dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast X-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.
We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and it is thus suitable for a continuous detection of the cantilevers dynamics.
The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multi-configuration time-dependent Hartree method (MCTDH). It is found that the presence of a non-adiabatic coupling close to the Franck-Condon point can preserve electronic coherence to some extent. Additionally, the possibility of steering the nuclear wavepackets by imprinting a relative phase between the electronic states during the photoionization process is discussed. It is found that the steering of nuclear wavepackets is possible given that a coherent electronic wavepacket embodying the phase difference passes through a conical intersection. A conical intersection close to the Franck-Condon point is thus a necessary prerequisite for control, providing a clear path towards attochemistry.
We study the effect of quantum motion in a Mach-Zehnder interferometer where ultracold, two-level atoms cross a $pi/2 $-$pi $-$pi/2$ configuration of separated, laser illuminated regions. Explicit and exact expressions are obtained for transmission amplitudes of monochromatic, incident atomic waves using recurrence relations which take into account all possible paths: the direct ones usually considered in the simple semiclassical treatment, but including quantum motion corrections, and the paths in which the atoms are repeatedly reflected at the fields.
This paper elaborates the integral transformation technique of [K. Pachucki, W. Cencek, and J. Komasa, J. Chem. Phys. 122, 184101 (2005)] and uses it for the case of the non-relativistic kinetic and Coulomb potential energy operators, as well as for the relativistic mass-velocity and Darwin terms. The techniques are tested for the ground electronic state of the helium atom and new results are reported for the ground electronic state of the H$_3^+$ molecular ion near its equilibrium structure.