Anomalous Cyclotron Motion in Graphene Superlattice Cavities


Abstract in English

We consider graphene superlattice miniband fermions probed by electronic interferometry in magneto-transport experiments. By decoding the observed Fabry-Perot interference patterns together with our corresponding quantum transport simulations, we find that the Dirac quasiparticles originating from the superlattice minibands do not undergo conventional cyclotron motion but follow more subtle trajectories. In particular, dynamics at low magnetic fields is characterized by peculiar, straight trajectory segments. Our results provide new insights into superlattice miniband fermions and open up novel possibilities to use periodic potentials in electron optics experiments.

Download