We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the messenger RNA and micro RNA content in a cell. We provide theoretical and numerical evidences that the robustness of the gene expression is increased in the presence of micro RNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the messenger RNA in the presence of micro RNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.