Anisotropy-induced soliton excitation in magnetized strong-rung spin ladders


Abstract in English

We report low temperature electron spin resonance experimental and theoretical studies of an archetype $S=1/2$ strong-rung spin ladder material (C$_{5}$H$_{12}$N)$_{2}$CuBr$_{4}$. Unexpected dynamics is detected deep in the Tomonaga-Luttinger spin liquid regime. Close to the point where the system is half-magnetized (and believed to be equivalent to a gapless easy plane chain in zero field) we observed orientation-dependent spin gap and anomalous $g$-factor values. Field theoretical analysis demonstrates that the observed low-energy excitation modes in magnetized (C$_{5}$H$_{12}$N)$_{2}$CuBr$_{4}$ are solitonic excitations caused by Dzyaloshinskii-Moriya interaction presence.

Download