Do you want to publish a course? Click here

The Cosmic Thermal History Probed by Sunyaev-Zeldovich Effect Tomography

87   0   0.0 ( 0 )
 Added by Yi-Kuan Chiang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic thermal history, quantified by the evolution of the mean thermal energy density in the universe, is driven by the growth of structures as baryons get shock heated in collapsing dark matter halos. This process can be probed by redshift-dependent amplitudes of the thermal Sunyaev-Zeldovich (SZ) effect background. To do so, we cross-correlate eight sky intensity maps in the $it{Planck}$ and Infrared Astronomical Satellite missions with two million spectroscopic redshift references in the Sloan Digital Sky Surveys. This delivers snapshot spectra for the far-infrared to microwave background light as a function of redshift up to $zsim3$. We decompose them into the SZ and thermal dust components. Our SZ measurements directly constrain $langle bP_{rm e} rangle$, the halo bias-weighted mean electron pressure, up to $zsim 1$. This is the highest redshift achieved to date, with uncorrelated redshift bins thanks to the spectroscopic references. We detect a threefold increase in the density-weighted mean electron temperature $bar{T}_{rm{e}}$ from $7times 10^5~{rm K}$ at $z=1$ to $2times 10^6~{rm K}$ today. Over $z=1$-$0$, we witness the build-up of nearly $70%$ of the present-day mean thermal energy density $rho_{rm{th}}$, with the corresponding density parameter $Omega_{rm th}$ reaching $1.5 times10^{-8}$. We find the mass bias parameter of $it{Planck}$s universal pressure profile of $B=1.27$ (or $1-b=1/B=0.79$), consistent with the magnitude of non-thermal pressure in gas motion and turbulence from mass assembly. We estimate the redshift-integrated mean Compton parameter $ysim1.2times10^{-6}$, which will be tested by future spectral distortion experiments. More than half of which originates from the large-scale structure at $z<1$, which we detect directly.



rate research

Read More

We study here an alternative technique to probe the Dark Ages (DA) and the Epoch of Reonization (EoR) that makes use of the Comptonization of the CMB spectrum modified by physical effects occurring during this epoch related to the emergence of the 21-cm radiation background. Inverse Compton scattering of 21-cm photon background by thermal and non-thermal electrons residing in the atmospheres of cosmic structures like galaxy clusters, radiogalaxy lobes and galaxy halos, produces a specific form of Sunyaev-Zeldovich effect (SZE) that we refer to as SZE-21cm. We derive the SZE-21cm in a general relativistic approach which is required to describe the correct spectral features of this astrophysical effect. We calculate the spectral features of the thermal and non-thermal SZE-21cm in galaxy clusters and in radiogalaxy lobes, and their dependence on the history of physical mechanisms occurring during the DA and EoR. We study how the spectral shape of the SZE-21cm can be used to establish the global features in the mean 21-cm spectrum generated during and prior to the EoR, and how it depends on the properties of the (thermal and non-thermal) plasma in cosmic structures. We find that the thermal and non-thermal SZE-21cm have peculiar spectral shapes that allow to investigate the physics and history of the EoR and DA. Its spectrum depends on the gas temperature (for the thermal SZE-21cm) and on the electrons minimum momentum (for the non-thermal SZE-21cm). The global SZE-21cm signal can be detected (in $sim 1000$ hrs) by SKA1-low in the frequency range $ u simgt 75-90$ MHz, for clusters in the temperature range 5 to 20 keV, and the difference between the SZE-21cm and the standard SZE can be detected by SKA1 or SKA2 at frequencies depending on the background model and the cluster temperature. [abridged]
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 $sigma$, (ii) 3 $sigma$, and (iii) 4 $sigma$. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is $A_{rm tSZ-CIB}= 1.2pm0.3$. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
[Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zeldovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation for a thermal electron plasma in the relativistic regime have been done but cannot be applied to a general relativistic electron distribution. Here we derive a general form of the SZ effect polarization valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole, focusing on the CMB quadrupole and octupole that provide the largest detectable signals in galaxy clusters. We found that the CMB quadrupole induced Stoke parameter Q is always positive with a maximum amplitude at 216 GHz which increases slightly with increasing cluster temperature. The CMB octupole induced Q spectrum shows, instead, a cross-over frequency which depends on the cluster electron temperature, or on the minimum momentum p_1 as well as on the power-law spectral index of a non-thermal electron population. We discuss some possibilities to disentangle the quadrupole-induced Q spectrum from the octupole-induced one which allow to measure these quantities through the SZ effect polarization. We finally apply our model to the realistic case of the Bullet cluster and derive the visibility windows of the total, quandrupole-induced and octupole-induced Stoke parameter Q in the frequency ranges accessible to SKA, ALMA, MILLIMETRON and CORE++ experiments.
In the present universe, magnetic fields exist with various strengths and on various scales. One possible origin of these cosmic magnetic fields is the primordial magnetic fields (PMFs) generated in the early universe. PMFs are considered to contribute to matter density evolution via Lorentz force and the thermal history of intergalactic medium (IGM) gas due to ambipolar diffusion. Therefore, information about PMFs should be included in the temperature anisotropy of the Cosmic Microwave Background through the thermal Sunyaev-Zeldovich (tSZ) effect in IGM. In this article, given an initial power spectrum of PMFs, we show the spatial fluctuation of mass density and temperature of the IGM and tSZ angular power spectrum created by the PMFs. Finally, we find that the tSZ angular power spectrum induced by PMFs becomes significant on small scales, even with PMFs below the observational upper limit. Therefore, we conclude that the measurement of tSZ anisotropy on small scales will provide the most stringent constraint on PMFs.
Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zeldovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (~ tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations. The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations. For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~ 5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا