We obtain uniform estimates for the canonical solution to $barpartial u=f$ on the Cartesian product of smoothly bounded planar domains, when $f$ is continuous up to the boundary. This generalizes Landuccis result for the bidisc toward higher dimensional product domains.
The author showed that a sequence in the unit disk is a zero sequence for the Bergman space $A^p$ if and only if a certain weighted space $L^p(W}$ contains a nontrivial analytic function. In this paper it is shown that the sequence is an interpolating sequence for $A^p$ if and only if it is separated in the hyperbolic metric and the $barpartial$-equation $(1 - |z|^2)barpartial u = f$ has a solution $u$ belonging to $L^p(W)$ for every $f$ in $L^p(W)$.
This paper provides a precise asymptotic expansion for the Bergman kernel on the non-smooth worm domains of Christer Kiselman in complex 2-space. Applications are given to the failure of Condition R, to deviant boundary behavior of the kernel, and to L^p mapping properties of the kernel.
We prove Strichartz estimates with a loss of derivatives for the Schrodinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a result of the second author regarding the Schrodinger equation on the Euclidean cone.
We describe recent work on the Bergman kernel of the (non-smooth) worm domain in several complex variables. An asymptotic expansion is obtained for the Bergman kernel. Mapping properties of the Bergman projection are studied. Irregularity properties of the kernal at the boundary are established. This is an expository paper, and considerable background is provided. Discussion of the smooth worm is also included.
We investigate regularity properties of the $overline{partial}$-equation on domains in a complex euclidean space that depend on a parameter. Both the interior regularity and the regularity in the parameter are obtained for a continuous family of pseudoconvex domains. The boundary regularity and the regularity in the parameter are also obtained for smoothly bounded strongly pseudoconvex domains.
Robert Xin Dong
,Yifei Pan
,Yuan Zhang
.
(2020)
.
"Uniform estimates for the canonical solution to the $barpartial$-equation on product domains"
.
Robert Xin Dong
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا