No Arabic abstract
We investigate the problem of determining how many monochromatic trees are necessary to cover the vertices of an edge-coloured random graph. More precisely, we show that for $pgg n^{-1/6}{(ln n)}^{1/6}$, in any $3$-edge-colouring of the random graph $G(n,p)$ we can find three monochromatic trees such that their union covers all vertices. This improves, for three colours, a result of Bucic, Korandi and Sudakov.
We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree {sl rainbow} trees in various host graphs, having their edges coloured independently and uniformly at random, using a predetermined palette. Our first result asserts that a uniform colouring of $mathbb{G}(n,omega(1)/n)$, using a palette of size $n$, a.a.s. admits a rainbow copy of any given bounded-degree tree on at most $(1-varepsilon)n$ vertices, where $varepsilon > 0$ is arbitrarily small yet fixed. This serves as a rainbow variant of a classical result by Alon, Krivelevich, and Sudakov pertaining to the embedding of bounded-degree almost-spanning prescribed trees in $mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$. Given an $n$-vertex graph $G$ with minimum degree at least $delta n$, where $delta > 0$ is fixed, we use our aforementioned result in order to prove that a uniform colouring of the randomly perturbed graph $G cup mathbb{G}(n,omega(1)/n)$, using $(1+alpha)n$ colours, where $alpha > 0$ is arbitrarily small yet fixed, a.a.s. admits a rainbow copy of any given bounded-degree {sl spanning} tree. This can be viewed as a rainbow variant of a result by Krivelevich, Kwan, and Sudakov who proved that $G cup mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$, a.a.s. admits a copy of any given bounded-degree spanning tree. Finally, and with $G$ as above, we prove that a uniform colouring of $G cup mathbb{G}(n,omega(n^{-2}))$ using $n-1$ colours a.a.s. admits a rainbow spanning tree. Put another way, the trivial lower bound on the size of the palette required for supporting a rainbow spanning tree is also sufficient, essentially as soon as the random perturbation a.a.s. has edges.
We show that for any colouring of the edges of the complete bipartite graph $K_{n,n}$ with 3 colours there are 5 disjoint monochromatic cycles which together cover all but $o(n)$ of the vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices.
Let $G$ be an edge-coloured graph. The minimum colour degree $delta^c(G)$ of $G$ is the largest integer $k$ such that, for every vertex $v$, there are at least $k$ distinct colours on edges incident to $v$. We say that $G$ is properly coloured if no two adjacent edges have the same colour. In this paper, we show that, for any $varepsilon >0$ and $n$ large, every edge-coloured graph $G$ with $delta^c(G) ge (1/2+varepsilon)n$ contains a properly coloured cycle of length at least $min{ n , lfloor 2 delta^c(G)/3 rfloor}$.
The monochromatic tree partition number of an $r$-edge-colored graph $G$, denoted by $t_r(G)$, is the minimum integer $k$ such that whenever the edges of $G$ are colored with $r$ colors, the vertices of $G$ can be covered by at most $k$ vertex-disjoint monochromatic trees. In general, to determine this number is very difficult. For 2-edge-colored complete multipartite graph, Kaneko, Kano, and Suzuki gave the exact value of $t_2(K(n_1,n_2,...,n_k))$. In this paper, we prove that if $ngeq 3$, and K(n,n) is 3-edge-colored such that every vertex has color degree 3, then $t_3(K(n,n))=3.$
ErdH{o}s, Gyarfas and Pyber showed that every $r$-edge-coloured complete graph $K_n$ can be covered by $25 r^2 log r$ vertex-disjoint monochromatic cycles (independent of $n$). Here, we extend their result to the setting of binomial random graphs. That is, we show that if $p = p(n) = Omega(n^{-1/(2r)})$, then with high probability any $r$-edge-coloured $G(n,p)$ can be covered by at most $1000 r^4 log r $ vertex-disjoint monochromatic cycles. This answers a question of Korandi, Mousset, Nenadov, v{S}kori{c} and Sudakov.