Do you want to publish a course? Click here

Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

107   0   0.0 ( 0 )
 Added by Liang Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building under dynamic pricing with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.



rate research

Read More

224 - Qingrui Zhang , Hao Dong , Wei Pan 2020
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional model-based control methods can hardly be applied. Compared with model-based control in control theory, deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics. However, to directly apply DRL to decentralized multi-agent control is challenging, as interactions among agents make the learning environment non-stationary. More importantly, the existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system from a control-theoretic perspective, so the learned control polices are highly possible to generate abnormal or dangerous behaviors in real applications. Hence, without stability guarantee, the application of the existing MARL algorithms to real multi-agent systems is of great concern, e.g., UAVs, robots, and power systems, etc. In this paper, we aim to propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee. The new MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is proposed under the well-known framework of centralized-training-with-decentralized-execution. The closed-loop stability is guaranteed by the introduction of a stability constraint during the policy improvement in our MASAC algorithm. The stability constraint is designed based on Lyapunovs method in control theory. To demonstrate the effectiveness, we present a multi-agent navigation example to show the efficiency of the proposed MASAC algorithm.
This paper develops an efficient multi-agent deep reinforcement learning algorithm for cooperative controls in powergrids. Specifically, we consider the decentralized inverter-based secondary voltage control problem in distributed generators (DGs), which is first formulated as a cooperative multi-agent reinforcement learning (MARL) problem. We then propose a novel on-policy MARL algorithm, PowerNet, in which each agent (DG) learns a control policy based on (sub-)global reward but local states from its neighboring agents. Motivated by the fact that a local control from one agent has limited impact on agents distant from it, we exploit a novel spatial discount factor to reduce the effect from remote agents, to expedite the training process and improve scalability. Furthermore, a differentiable, learning-based communication protocol is employed to foster the collaborations among neighboring agents. In addition, to mitigate the effects of system uncertainty and random noise introduced during on-policy learning, we utilize an action smoothing factor to stabilize the policy execution. To facilitate training and evaluation, we develop PGSim, an efficient, high-fidelity powergrid simulation platform. Experimental results in two microgrid setups show that the developed PowerNet outperforms a conventional model-based control, as well as several state-of-the-art MARL algorithms. The decentralized learning scheme and high sample efficiency also make it viable to large-scale power grids.
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.
The design of building heating, ventilation, and air conditioning (HVAC) system is critically important, as it accounts for around half of building energy consumption and directly affects occupant comfort, productivity, and health. Traditional HVAC control methods are typically based on creating explicit physical models for building thermal dynamics, which often require significant effort to develop and are difficult to achieve sufficient accuracy and efficiency for runtime building control and scalability for field implementations. Recently, deep reinforcement learning (DRL) has emerged as a promising data-driven method that provides good control performance without analyzing physical models at runtime. However, a major challenge to DRL (and many other data-driven learning methods) is the long training time it takes to reach the desired performance. In this work, we present a novel transfer learning based approach to overcome this challenge. Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance, by decomposing the design of neural network controller into a transferable front-end network that captures building-agnostic behavior and a back-end network that can be efficiently trained for each specific building. We conducted experiments on a variety of transfer scenarios between buildings with different sizes, numbers of thermal zones, materials and layouts, air conditioner types, and ambient weather conditions. The experimental results demonstrated the effectiveness of our approach in significantly reducing the training time, energy cost, and temperature violations.
This paper presents a novel hierarchical deep reinforcement learning (DRL) based design for the voltage control of power grids. DRL agents are trained for fast, and adaptive selection of control actions such that the voltage recovery criterion can be met following disturbances. Existing voltage control techniques suffer from the issues of speed of operation, optimal coordination between different locations, and scalability. We exploit the area-wise division structure of the power system to propose a hierarchical DRL design that can be scaled to the larger grid models. We employ an enhanced augmented random search algorithm that is tailored for the voltage control problem in a two-level architecture. We train area-wise decentralized RL agents to compute lower-level policies for the individual areas, and concurrently train a higher-level DRL agent that uses the updates of the lower-level policies to efficiently coordinate the control actions taken by the lower-level agents. Numerical experiments on the IEEE benchmark 39-bus model with 3 areas demonstrate the advantages and various intricacies of the proposed hierarchical approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا