Do you want to publish a course? Click here

An $ell_p$ theory of PCA and spectral clustering

102   0   0.0 ( 0 )
 Added by Kaizheng Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Principal Component Analysis (PCA) is a powerful tool in statistics and machine learning. While existing study of PCA focuses on the recovery of principal components and their associated eigenvalues, there are few precise characterizations of individual principal component scores that yield low-dimensional embedding of samples. That hinders the analysis of various spectral methods. In this paper, we first develop an $ell_p$ perturbation theory for a hollowed version of PCA in Hilbert spaces which provably improves upon the vanilla PCA in the presence of heteroscedastic noises. Through a novel $ell_p$ analysis of eigenvectors, we investigate entrywise behaviors of principal component score vectors and show that they can be approximated by linear functionals of the Gram matrix in $ell_p$ norm, which includes $ell_2$ and $ell_infty$ as special examples. For sub-Gaussian mixture models, the choice of $p$ giving optimal bounds depends on the signal-to-noise ratio, which further yields optimality guarantees for spectral clustering. For contextual community detection, the $ell_p$ theory leads to a simple spectral algorithm that achieves the information threshold for exact recovery. These also provide optimal recovery results for Gaussian mixture and stochastic block models as special cases.



rate research

Read More

We study the problem of detecting a structured, low-rank signal matrix corrupted with additive Gaussian noise. This includes clustering in a Gaussian mixture model, sparse PCA, and submatrix localization. Each of these problems is conjectured to exhibit a sharp information-theoretic threshold, below which the signal is too weak for any algorithm to detect. We derive upper and lower bounds on these thresholds by applying the first and second moment methods to the likelihood ratio between these planted models and null models where the signal matrix is zero. Our bounds differ by at most a factor of root two when the rank is large (in the clustering and submatrix localization problems, when the number of clusters or blocks is large) or the signal matrix is very sparse. Moreover, our upper bounds show that for each of these problems there is a significant regime where reliable detection is information- theoretically possible but where known algorithms such as PCA fail completely, since the spectrum of the observed matrix is uninformative. This regime is analogous to the conjectured hard but detectable regime for community detection in sparse graphs.
Diffusion maps is a manifold learning algorithm widely used for dimensionality reduction. Using a sample from a distribution, it approximates the eigenvalues and eigenfunctions of associated Laplace-Beltrami operators. Theoretical bounds on the approximation error are however generally much weaker than the rates that are seen in practice. This paper uses new approaches to improve the error bounds in the model case where the distribution is supported on a hypertorus. For the data sampling (variance) component of the error we make spatially localised compact embedding estimates on certain Hardy spaces; we study the deterministic (bias) component as a perturbation of the Laplace-Beltrami operators associated PDE, and apply relevant spectral stability results. Using these approaches, we match long-standing pointwise error bounds for both the spectral data and the norm convergence of the operator discretisation. We also introduce an alternative normalisation for diffusion maps based on Sinkhorn weights. This normalisation approximates a Langevin diffusion on the sample and yields a symmetric operator approximation. We prove that it has better convergence compared with the standard normalisation on flat domains, and present a highly efficient algorithm to compute the Sinkhorn weights.
Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a textit{sum-type decision statistic} outperforms schemes that utilize the $ell_1$ and $ell_2$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and illustrate the performance with a video data example, where the interest is in identifying objects.
Random subspaces $X$ of $mathbb{R}^n$ of dimension proportional to $n$ are, with high probability, well-spread with respect to the $ell_p$-norm (for $p in [1,2]$). Namely, every nonzero $x in X$ is robustly non-sparse in the following sense: $x$ is $varepsilon |x|_p$-far in $ell_p$-distance from all $delta n$-sparse vectors, for positive constants $varepsilon, delta$ bounded away from $0$. This $ell_p$-spread property is the natural counterpart, for subspaces over the reals, of the minimum distance of linear codes over finite fields, and, for $p = 2$, corresponds to $X$ being a Euclidean section of the $ell_1$ unit ball. Explicit $ell_p$-spread subspaces of dimension $Omega(n)$, however, are not known except for $p=1$. The construction for $p=1$, as well as the best known constructions for $p in (1,2]$ (which achieve weaker spread properties), are analogs of low density parity check (LDPC) codes over the reals, i.e., they are kernels of sparse matrices. We study the spread properties of the kernels of sparse random matrices. Rather surprisingly, we prove that with high probability such subspaces contain vectors $x$ that are $o(1)cdot |x|_2$-close to $o(n)$-sparse with respect to the $ell_2$-norm, and in particular are not $ell_2$-spread. On the other hand, for $p < 2$ we prove that such subspaces are $ell_p$-spread with high probability. Moreover, we show that a random sparse matrix has the stronger restricted isometry property (RIP) with respect to the $ell_p$ norm, and this follows solely from the unique expansion of a random biregular graph, yielding a somewhat unexpected generalization of a similar result for the $ell_1$ norm [BGI+08]. Instantiating this with explicit expanders, we obtain the first explicit constructions of $ell_p$-spread subspaces and $ell_p$-RIP matrices for $1 leq p < p_0$, where $1 < p_0 < 2$ is an absolute constant.
Recent years have seen the rise of convolutional neural network techniques in exemplar-based image synthesis. These methods often rely on the minimization of some variational formulation on the image space for which the minimizers are assumed to be the solutions of the synthesis problem. In this paper we investigate, both theoretically and experimentally, another framework to deal with this problem using an alternate sampling/minimization scheme. First, we use results from information geometry to assess that our method yields a probability measure which has maximum entropy under some constraints in expectation. Then, we turn to the analysis of our method and we show, using recent results from the Markov chain literature, that its error can be explicitly bounded with constants which depend polynomially in the dimension even in the non-convex setting. This includes the case where the constraints are defined via a differentiable neural network. Finally, we present an extensive experimental study of the model, including a comparison with state-of-the-art methods and an extension to style transfer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا