No Arabic abstract
The Hofstadter problem is the lattice analog of the quantum Hall effect and is the paradigmatic example of topology induced by an applied magnetic field. Conventionally, the Hofstadter problem involves adding $sim 10^4$ T magnetic fields to a trivial band structure. In this work, we show that when a magnetic field is added to an initially topological band structure, a wealth of remarkable possible phases emerges. Remarkably, we find topological phases which cannot be realized in any crystalline insulators. We prove that threading magnetic flux through a Hamiltonian with nonzero Chern number enforces a phase transition at fixed filling and that a 2D Hamiltonian with nontrivial Kane-Mele invariant produces a 3D TI or 3D weak TI phase in periodic flux. We then study fragile topology protected by the product of two-fold rotation and time-reversal and show that there exists a 3D higher order TI phase where corner modes are pumped by flux. We show that a model of twisted bilayer graphene realizes this phase. Our results rely primarily on the magnetic translation group which exists at rational values of the flux. The advent of Moire lattices also renders our work relevant experimentally. In Moire lattices, it is possible for fields of order $1-30$ T to reach one flux per plaquette and allow access to our proposed Hofstadter topological phase.
In this work, we identify a new class of Z2 topological insulator protected by non-symmorphic crystalline symmetry, dubbed a topological non-symmorphic crystalline insulator. We construct a concrete tight-binding model with the non-symmorphic space group pmg and confirm the topological nature of this model by calculating topological surface states and defining a Z2 topological invariant. Based on the projective representation theory, we extend our discussion to other non-symmorphic space groups that allows to host topological non-symmorphic crystalline insulators.
Using the Sierpinski carpet and gasket, we investigate whether fractal lattices embedded in two-dimensional space can support topological phases when subjected to a homogeneous external magnetic field. To this end, we study the localization property of eigenstates, the Chern number, and the evolution of energy level statistics when disorder is introduced. Combining these theoretical tools, we identify regions in the phase diagram of both the carpet and the gasket, for which the systems exhibit properties normally associated to gapless topological phases with a mobility edge.
We formulate topological crystalline materials on the basis of the twisted equivariant $K$-theory. Basic ideas of the twisted equivariant $K$-theory is explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a new class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.
We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner invariant.
In this work, we study the topological phases of the dimerized square lattice in the presence of an external magnetic field. The dimerization pattern in the lattices hopping amplitudes can induce a series of bulk energy gap openings in the Hofstadter spectrum at certain fractional fillings, giving rise to various topological phases. In particular, we show that at $frac{1}{2}$-filling the topological quadrupole insulator phase with a quadrupole moment quantized to $frac{e}{2}$ and associated corner-localized mid-gap states exists in certain parameter regime for all magnetic fluxes. At $frac{1}{4}$ filling, the system can host obstructed atomic limit phases or Chern insulator phases. For those configurations gapped at fillings below $frac{1}{4}$, the system is in Chern insulator phases of various non-vanishing Chern numbers. Across the phase diagram, both bulk-obstructed and boundary-obstructed topological phase transitions exist in this model.