Do you want to publish a course? Click here

Movement Tracking by Optical Flow Assisted Inertial Navigation

128   0   0.0 ( 0 )
 Added by Lassi Meronen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Robust and accurate six degree-of-freedom tracking on portable devices remains a challenging problem, especially on small hand-held devices such as smartphones. For improved robustness and accuracy, complementary movement information from an IMU and a camera is often fused. Conventional visual-inertial methods fuse information from IMUs with a sparse cloud of feature points tracked by the device camera. We consider a visually dense approach, where the IMU data is fused with the dense optical flow field estimated from the camera data. Learning-based methods applied to the full image frames can leverage visual cues and global consistency of the flow field to improve the flow estimates. We show how a learning-based optical flow model can be combined with conventional inertial navigation, and how ideas from probabilistic deep learning can aid the robustness of the measurement updates. The practical applicability is demonstrated on real-world data acquired by an iPad in a challenging low-texture environment.



rate research

Read More

Infants spontaneous and voluntary movements mirror developmental integrity of brain networks since they require coordinated activation of multiple sites in the central nervous system. Accordingly, early detection of infants with atypical motor development holds promise for recognizing those infants who are at risk for a wide range of neurodevelopmental disorders (e.g., cerebral palsy, autism spectrum disorders). Previously, novel wearable technology has shown promise for offering efficient, scalable and automated methods for movement assessment in adults. Here, we describe the development of an infant wearable, a multi-sensor smart jumpsuit that allows mobile accelerometer and gyroscope data collection during movements. Using this suit, we first recorded play sessions of 22 typically developing infants of approximately 7 months of age. These data were manually annotated for infant posture and movement based on video recordings of the sessions, and using a novel annotation scheme specifically designed to assess the overall movement pattern of infants in the given age group. A machine learning algorithm, based on deep convolutional neural networks (CNNs) was then trained for automatic detection of posture and movement classes using the data and annotations. Our experiments show that the setup can be used for quantitative tracking of infant movement activities with a human equivalent accuracy, i.e., it meets the human inter-rater agreement levels in infant posture and movement classification. We also quantify the ambiguity of human observers in analyzing infant movements, and propose a method for utilizing this uncertainty for performance improvements in training of the automated classifier. Comparison of different sensor configurations also shows that four-limb recording leads to the best performance in posture and movement classification.
The deep learning-based visual tracking algorithms such as MDNet achieve high performance leveraging to the feature extraction ability of a deep neural network. However, the tracking efficiency of these trackers is not very high due to the slow feature extraction for each frame in a video. In this paper, we propose an effective tracking algorithm to alleviate the time-consuming problem. Specifically, we design a deep flow collaborative network, which executes the expensive feature network only on sparse keyframes and transfers the feature maps to other frames via optical flow. Moreover, we raise an effective adaptive keyframe scheduling mechanism to select the most appropriate keyframe. We evaluate the proposed approach on large-scale datasets: OTB2013 and OTB2015. The experiment results show that our algorithm achieves considerable speedup and high precision as well.
Most end-to-end Multi-Object Tracking (MOT) methods face the problems of low accuracy and poor generalization ability. Although traditional filter-based methods can achieve better results, they are difficult to be endowed with optimal hyperparameters and often fail in varying scenarios. To alleviate these drawbacks, we propose a LiDAR-based 3D MOT framework named FlowMOT, which integrates point-wise motion information with the traditional matching algorithm, enhancing the robustness of the motion prediction. We firstly utilize a scene flow estimation network to obtain implicit motion information between two adjacent frames and calculate the predicted detection for each old tracklet in the previous frame. Then we use Hungarian algorithm to generate optimal matching relations with the ID propagation strategy to finish the tracking task. Experiments on KITTI MOT dataset show that our approach outperforms recent end-to-end methods and achieves competitive performance with the state-of-the-art filter-based method. In addition, ours can work steadily in the various-speed scenarios where the filter-based methods may fail.
392 - Shilei Fu , Feng Xu , Ya-Qiu Jin 2019
Despite the advantages of all-weather and all-day high-resolution imaging, SAR remote sensing images are much less viewed and used by general people because human vision is not adapted to microwave scattering phenomenon. However, expert interpreters can be trained by compare side-by-side SAR and optical images to learn the translation rules from SAR to optical. This paper attempts to develop machine intelligence that are trainable with large-volume co-registered SAR and optical images to translate SAR image to optical version for assisted SAR interpretation. A novel reciprocal GAN scheme is proposed for this translation task. It is trained and tested on both spaceborne GF-3 and airborne UAVSAR images. Comparisons and analyses are presented for datasets of different resolutions and polarizations. Results show that the proposed translation network works well under many scenarios and it could potentially be used for assisted SAR interpretation.
We present a self-supervised learning approach for optical flow. Our method distills reliable flow estimations from non-occluded pixels, and uses these predictions as ground truth to learn optical flow for hallucinated occlusions. We further design a simple CNN to utilize temporal information from multiple frames for better flow estimation. These two principles lead to an approach that yields the best performance for unsupervised optical flow learning on the challenging benchmarks including MPI Sintel, KITTI 2012 and 2015. More notably, our self-supervised pre-trained model provides an excellent initialization for supervised fine-tuning. Our fine-tuned models achieve state-of-the-art results on all three datasets. At the time of writing, we achieve EPE=4.26 on the Sintel benchmark, outperforming all submitted methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا