No Arabic abstract
We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag(110) surface using Scanning Tunneling Microscopy and High-Resolution Photoemission Spectroscopy. The results show that silicene nanoribbons present a strong resistance towards oxidation using molecular oxygen. This can be overcome by increasing the electric field in the STM tunnel junction above a threshold of +2.6 V to induce oxygen dissociation and reaction. The higher reactivity of the silicene nanoribbons towards atomic oxygen is observed as expected. The HR-PES confirm these observations: Even at high exposures of molecular oxygen, the Si 2p core-level peaks corresponding to pristine silicene remain dominant, reflecting a very low reactivity to molecular oxygen. Complete oxidation is obtained following exposure to high doses of atomic oxygen; the Si 2p core level peak corresponding to pristine silicene disappears.
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. By using low-temperature scanning tunneling microscopy, it is found that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band-gap engineering, which is dominated by different buckled structures in R13xR13, 4x4, and 2R3x2R3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on R13xR13, 4x4, and 2R3x2R3 structures under oxidation, which is verified by in-situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.
Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to gradual and reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of well pronounced faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise -- on a scale of a couple of picoseconds -- in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions, are consistent with the experimental observations. The presented conditions can be used as a new method to fabricate nano-tips of few nm height, which can be used in coherent electron pulses generation. Besides the direct practical application, the results also provide insight into the microscopic mechanisms of light-matter interaction. The apparent growth mechanism of the features may also help to explain the origin of enhanced electron field emission, which leads to vacuum arcs, in high electric-field devices such as radio-frequency particle accelerators.
We study quasi-ballistic heat transfer through air between a hot nanometer-scale tip and a sample. The hot tip/surface configuration is widely used to perform nonintrusive confined heating. Using a Monte-Carlo simulation, we find that the thermal conductance reaches 0.8 MW.m-2K-1 on the surface under the tip and show the shape of the heat flux density distribution (nanometer-scale thermal spot). These results show that a surface can be efficiently heated locally without contact. The temporal resolution of the heat transfer is a few tens of picoseconds.
Due to the drastically different intralayer versus interlayer bonding strengths, the mechanical, thermal, and electrical properties of two-dimensional (2D) materials are highly anisotropic between the in-plane and out-of-plane directions. The structural anisotropy may also play a role in chemical reactions, such as oxidation, reduction, and etching. Here, the composition, structure, and electrical properties of mechanically exfoliated WSe2 nano- sheets on SiO2/Si substrates were studied as a function of the extent of thermal oxidation. A major component of the oxidation, as indicated from optical and Raman data, starts from the nano-sheet edges and propagates laterally towards the center. Partial oxidation also occurs in certain areas at the surface of the flakes, which are shown to be highly conductive by microwave impedance microscopy. Using secondary ion mass spectroscopy, we also observed extensive oxidation at the WSe2/SiO2 interface. The combination of multiple microcopy methods can thus provide vital information on the spatial evolution of chemical reactions on 2D materials and the nanoscale electrical properties of the reaction products.
Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K) points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.