No Arabic abstract
Two-dimensional systems can host exotic particles called anyons whose quantum statistics are neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall effect at filling factor $ u=1/m$ (where m is an odd integer) have been predicted to obey abelian fractional statistics, with a phase $varphi$ associated with the exchange of two particles equal to $pi/m$. However, despite numerous experimental attempts, clear signatures of fractional statistics remain elusive. Here we experimentally demonstrate abelian fractional statistics at filling factor $ u=1/3$ by measuring the current correlations resulting from the collision between anyons at a beam-splitter. By analyzing their dependence on the anyon current impinging on the splitter and comparing with recent theoretical models, we extract $varphi=pi/3$, in agreement with predictions.
The lowest-Landau-level anyon model becomes nonperiodic in the statistics parameter when the finite size of the attached flux tubes is taken into account. The finite-size effects cause the inverse proportional relation between the critical filling factor and the statistics parameter to be nonperiodically continued in the screening regime, where the fluxes are anti-parallel to the external magnetic field -- at critical filling, the external magnetic field is entirely screened by the mean magnetic field associated with the flux tubes. A clustering argument is proposed to select particular values of the statistics parameter. In this way, IQHE and FQHE fillings are obtained in terms of gapped nondegenerate LLL-anyonic wave functions. Jains series are reproduced without the need to populate higher Landau levels. New FQHE series are proposed, like, in particular, the particle-hole complementary series of the Laughlin one. For fast-rotating Bose-Einstein condensates, a corresponding clustering argument yields particular fractional filling series.
We study theoretically resonant tunneling of composite fermions through their quasi-bound states around a fractional quantum Hall island, and find a rich set of possible transitions of the island state as a function of the magnetic field or the backgate voltage. These considerations have possible relevance to a recent experimental study, and bring out many subtleties involved in deducing fractional braiding statistics.
The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states considered by Laughlin, non-trivial Berry phase statistics were demonstrated many years ago by Arovas, Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of excited composite fermions. We use the method developed by Kjonsberg, Myrheim and Leinaas to compute the Berry phase for a single composite-fermion quasiparticle, and find that it agrees with the effective magnetic field concept for composite fermions. We then evaluate the fractional statistics, related to the change in the Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior. Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional statistics. A short report on some parts of this article has appeared previously.
This paper has been superseded by a new preprint: Kun Yang and Bertrand I. Halperin, arXiv:0901.1429.
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.