We present several sequences involving harmonic numbers and the central binomial coefficients. The calculational technique is consists of a special summation method that allows, based on proper two-valued integer functions, to calculate different families of power series which involve odd harmonic numbers and central binomial coefficients. Furthermore it is shown that based on these series a new type of nonlinear Euler sums that involve odd harmonic numbers can be calculated in terms of zeta functions.
Recently, Ni and Pan proved a $q$-congruence on certain sums involving central $q$-binomial coefficients, which was conjectured by Guo. In this paper, we give a generalization of this $q$-congruence and confirm another $q$-congruence, also conjectured by Guo. Our proof uses Ni and Pans technique and a simple $q$-congruence observed by Guo and Schlosser.
In this paper, we investigate the existence of Sierpi{n}ski numbers and Riesel numbers as binomial coefficients. We show that for any odd positive integer $r$, there exist infinitely many Sierpi{n}ski numbers and Riesel numbers of the form $binom{k}{r}$. Let $S(x)$ be the number of positive integers $r$ satisfying $1leq rleq x$ for which $binom{k}{r}$ is a Sierpi{n}ski number for infinitely many $k$. We further show that the value $S(x)/x$ gets arbitrarily close to 1 as $x$ tends to infinity. Generalizations to base $a$-Sierpi{n}ski numbers and base $a$-Riesel numbers are also considered. In particular, we prove that there exist infinitely many positive integers $r$ such that $binom{k}{r}$ is simultaneously a base $a$-Sierpi{n}ski and base $a$-Riesel number for infinitely many $k$.
Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $sum_{k=0}^{p-1}binom akbinom{-1-a}kfrac p{k+b}pmod {p^2}$. For $n=0,1,2,ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudilin numbers, respectively. We also establish congruences for $$sum_{n=0}^{p-1}frac{D_n}{16^n},quad sum_{n=0}^{p-1}frac{D_n}{4^n}, quad sum_{n=0}^{p-1}frac{b_n}{(-3)^n},quad sum_{n=0}^{p-1}frac{b_n}{(-27)^n}pmod {p^2}$$ in terms of certain binary quadratic forms.
In this note, we extend the definition of multiple harmonic sums and apply their stuffle relations to obtain explicit evaluations of the sums $R_n(p,t)=sum olimits_{m=0}^n m^p H_m^t$, where $H_m$ are harmonic numbers. When $tle 4$ these sums were first studied by Spiess around 1990 and, more recently, by Jin and Sun. Our key step first is to find an explicit formula of a special type of the extended multiple harmonic sums. This also enables us to provide a general structural result of the sums $R_n(p,t)$ for all $tge 0$.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
J. Braun
,D. Romberger
,H. J. Bentz
.
(2020)
.
"On four families of power series involving harmonic numbers and central binomial coefficients"
.
Juergen Braun
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا