Do you want to publish a course? Click here

Investigation on radiation generated by Sub-GeV electrons in ultrashort Si and Ge bent crystals

75   0   0.0 ( 0 )
 Added by Laura Bandiera
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the measurements of the spectra of gamma radiation generated by 855 MeV electrons in bent silicon and germanium crystals at MAMI (MAinzer MIkrotron). The crystals were 15 {mu}m thick along the beam direction to ensure high deflection efficiency. Their (111) crystalline planes were bent by means of a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature. In such a way it was possible to investigate the radiation emitted under planar channeling and volume reflection as a function of the curvature of the crystalline planes. We show that using volume reflection, one can produce intense gamma radiation with comparable intensity but higher angular acceptance than for channeling. We studied the trade-off between radiation intensity and angular acceptance at different values of the crystal curvature. The measurements of radiation spectra have been carried out for the first time in bent Germanium crystals. In particular, the intensity of radiation in the Ge crystal is higher than in the Si one due to the higher atomic number, which is important for the development of the X-ray and gamma radiation sources based on higher-Z deformed crystals, such as crystalline undulator.



rate research

Read More

A periodically bent Si crystal is shown to efficiently serve for producing highly monochromatic radiation in a gamma-ray energy spectral range. A short-period small-amplitude bending yields narrow undulator-type spectral peaks in radiation from multi-GeV electrons and positrons channeling through the crystal. Benchmark theoretical results on the undulator are obtained by simulations of the channeling with a full atomistic approach to the projectile-crystal interactions over the macroscopic propagation distances. The simulations are facilitated by employing the MBN Explorer package for molecular dynamics calculations on the meso- bio- and nano-scales. The radiation from the ultra-relativistic channeling projectiles is computed within the quasi-classical formalism. The effects due to the quantum recoil are shown to be significantly prominent in the gamma-ray undulator radiation.
This report overviews studies accomplished in the U70 proton synchrotron of IHEP-Protvino during the recent two decades. Major attention is paid to a routine application of bent crystals for beam extraction from the machine. It has been confirmed experimentally that efficiency of beam extraction with a crystal deflector of around 85% is well feasible for a proton beam with intensity up to 1012 protons per cycle. Another trend is to use bent crystals for halo collimation in a high energy collider. New promising options emerge for, say, LHC and ILC based on the volume reflection effect, which has been discovered recently in machine study runs at U70 of IHEP (50 GeV) and SPS of CERN (400 GeV).
110 - V.M. Biryukov 2009
We show that theory predictions for volume reflection in bent crystals agree with recent experimental data. This makes possible to predict volume reflection angle and efficiency in a broad range of energy for various crystals. A simple formula is proposed for volume reflection efficiency. We derive the physical limits for application of crystal reflection at high-energy accelerators where it may help beam collimation.
The paper devoted to investigation of volume reflection and channeling processes of ultrarela- tivistic positive charged particles moving in germanium single crystals. We demonstrate that the choice of atomic potential on the basis of Hartree-Fock method and correct choice of Debye tem- perature allow us to describe the above mentioned processes in a good agreement with the recent experiments. Moreover, the presented in the paper universal form of equations for volume reflection gives true description of the process at a wide range of particle energies. Standing on this study we make predictions for mean angle reflection (as a function of bending radius) of positive and negative particles for germanium (110) and (111) crystallographic planes.
An investigation on stochastic deflection of high-energy charged particles in a bent crystal was carried out. In particular, we investigated the deflection efficiency under axial confinement of both positively and negatively charged particles as a function of the crystal orientation, the choice of the bending plane, and of the charge sign. Analytic estimations and numerical simulations were compared with dedicated experiments at the H4 secondary beam line of SPS North Area, with 120 GeV/$c$ electrons and positrons. In the work presented in this article, the optimal orientations of the plane of bending of the crystal, which allow deflecting the largest number of charged particles using a bent crystal in axial orientation, were found.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا