The AdS soliton is a nonsingular spacetime that has a flat conformal boundary with a compact $S^1$ direction. We find a horizonless cohomogeneity-1 metric that describes nonlinear gravitational oscillations of the AdS soliton in five dimensions. We call this spacetime the resonating AdS soliton. This solution is obtained as the nonlinear extension of normal modes of the AdS soliton dual to spin-2 glueball excitations. The boundary energy momentum tensor of the resonating AdS soliton has time periodic components, and it is interpreted as a coherently excited state in the dual field theory. Physical quantities of the resonating AdS soliton are multivalued at a fixed energy, suggesting a transition between different frequency solutions. The energy of the resonating AdS soliton is higher than that of the undeformed AdS soliton, in accordance with the positive energy conjecture proposed by Horowitz and Myers.