Do you want to publish a course? Click here

Explaining the XENON1T excess with Luminous Dark Matter

133   0   0.0 ( 0 )
 Added by Jayden Newstead
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by relatively low-mass Luminous Dark Matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock), to produce a heavier dark state with a ~2.75 keV mass splitting. This heavier state then decays within the detector, producing a peak in the electron recoil spectrum which is a good fit to the observed excess. We comment on the ability of future direct detection datasets to differentiate this model from other Beyond the Standard Model scenarios, and from possible tritium backgrounds, including the use of diurnal modulation, multi-channel signals etc.,~as possible distinguishing features of this scenario.



rate research

Read More

Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic rays (CRs) with the atmosphere. Due to the boost effect of high energy CRs, we show that the light ADM can be fast-moving and successfully fit the observed electron recoil spectrum through the ADM-electron scattering process. Meanwhile, our ADM predicts the scattering cross section $sigma_e sim {cal O}(10^{-38}- 10^{-39}$) cm$^{2}$, and thus can evade other direct detection constraints. The search for light meson rare decays, such as $eta to pi + slashed E_T$, would provide a complementary probe of our ADM in the future.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galaxy, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
90 - Debasish Borah 2021
We propose a self-interacting boosted dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. The Standard Model has been extended with two vector-like fermion singlets charged under a dark $U(1)_D$ gauge symmetry to describe the dark sector. While the presence of light vector boson mediator leads to sufficient DM self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via scattering of boosted DM component with electrons at the detector. The requirement of large annihilation rate of heavier DM into the lighter one for sufficient boosted DM flux leads to suppressed thermal relic abundance. A hybrid setup of thermal and non-thermal contribution from late decay of a scalar can lead to correct relic abundance. All these requirements leave a very tiny parameter space for sub-GeV DM keeping the model very predictive for near future experiments.
122 - Manoranjan Dutta 2021
We propose a self-interacting inelastic dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. Two quasi-degenerate Majorana fermion DM interact within themselves via a light hidden sector massive gauge boson and with the standard model particles via gauge kinetic mixing. We also consider an additional long-lived singlet scalar which helps in realising correct dark matter relic abundance via a hybrid setup comprising of both freeze-in and freeze-out mechanisms. While being consistent with the required DM phenomenology along with sufficient self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via inelastic down scattering of heavier DM component into the lighter one. All these requirements leave a very tiny parameter space keeping the model very predictive for near future experiments.
We show that electron recoils induced by non-relativistic Dark Matter interactions can fit well the recently reported Xenon1T excess, if they are mediated by a light pseudo-scalar in the MeV range. This is due to the favorable momentum-dependence of the resulting scattering rate, which partially compensates the unfavorable kinematics that tends to strongly suppress keV electron recoils. We study the phenomenology of the mediator and identify the allowed parameter space of the Xenon1T excess which is compatible with all experimental limits. We also find that the anomalous magnetic moments $(g-2)_{mu,e}$ of muons and electrons can be simultaneously explained in this scenario, at the prize of a fine-tuning in the couplings of the order of a few percent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا