No Arabic abstract
In this paper, we classify four-point local gluon S-matrices in arbitrary dimensions. This is along the same lines as cite{Chowdhury:2019kaq} where four-point local photon S-matrices and graviton S-matrices were classified. We do the classification explicitly for gauge groups $SO(N)$ and $SU(N)$ for all $N$ but our method is easily generalizable to other Lie groups. The construction involves combining not-necessarily-permutation-symmetric four-point S-matrices of photons and those of adjoint scalars into permutation symmetric four-point gluon S-matrix. We explicitly list both the components of the construction, i.e permutation symmetric as well as non-symmetric four point S-matrices, for both the photons as well as the adjoint scalars for arbitrary dimensions and for gauge groups $SO(N)$ and $SU(N)$ for all $N$. In this paper, we explicitly list the local Lagrangians that generate the local gluon S-matrices for $Dgeq 9$ and present the relevant counting for lower dimensions. Local Lagrangians for gluon S-matrices in lower dimensions can be written down following the same method. We also express the Yang-Mills four gluon S-matrix with gluon exchange in terms of our basis structures.
We study the space of all kinematically allowed four photon and four graviton S-matrices, polynomial in scattering momenta. We demonstrate that this space is the permutation invariant sector of a module over the ring of polynomials of the Mandelstam invariants $s$, $t$ and $u$. We construct these modules for every value of the spacetime dimension $D$, and so explicitly count and parameterize the most general four photon and four graviton S-matrix at any given derivative order. We also explicitly list the local Lagrangians that give rise to these S-matrices. We then conjecture that the Regge growth of S-matrices in all physically acceptable classical theories is bounded by $s^2$ at fixed $t$. A four parameter subset of the polynomial photon S-matrices constructed above satisfies this Regge criterion. For gravitons, on the other hand, no polynomial addition to the Einstein S-matrix obeys this bound for $D leq 6$. For $D geq 7$ there is a single six derivative polynomial Lagrangian consistent with our conjectured Regge growth bound. Our conjecture thus implies that the Einstein four graviton S-matrix does not admit any physically acceptable polynomial modifications for $Dleq 6$. A preliminary analysis also suggests that every finite sum of pole exchange contributions to four graviton scattering also such violates our conjectured Regge growth bound, at least when $Dleq 6$, even when the exchanged particles have low spin.
In this paper we study a wide class of planar single-trace four point correlators in the chiral conformal field theory ($chi$CFT$_4$) arising as a double scaling limit of the $gamma$-deformed $mathcal{N}=4$ SYM theory. In the planar (tHooft) limit, each of such correlators is described by a single Feynman integral having the bulk topology of a square lattice fishnet and/or of an honeycomb lattice of Yukawa vertices. The computation of this class of Feynmann integrals at any loop is achieved by means of an exactly-solvable spin chain magnet with $SO(1,5)$ symmetry. In this paper we explain in detail the solution of the magnet model as presented in our recent letter and we obtain a general formula for the representation of the Feynman integrals over the spectrum of the separated variables of the magnet, for any number of scalar and fermionic fields in the corresponding correlator. For the particular choice of scalar fields only, our formula reproduces the conjecture of B. Basso and L. Dixon for the fishnet integrals.
We consider a semiclassical (large string tension ~ lambda^1/2) limit of 4-point correlator of two heavy vertex operators with large quantum numbers and two light operators. It can be written in a factorized form as a product of two 3-point functions, each given by the integrated light vertex operator on the classical string solution determined by the heavy operators. We check consistency of this factorization in the case of a correlator with two dilatons as light operators. We study in detail the example when all 4 operators are chiral primary scalars, two of which carry large charge J of order of string tension. In the large J limit this correlator is nearly extremal. Its semiclassical expression is, indeed, found to be consistent with the general protected form expected for an extremal correlator. We demonstrate explicitly that our semiclassical result matches the large J limit of the known free N=4 SYM correlator for 4 chiral primary operators with charges J,-J,2,-2; we also compare it with an existing supergravity expression. As an example of a 4-point function with two non-BPS heavy operators, we consider the case when the latter are representing folded spinning with large AdS spin and two light states being chiral primary scalars.
Integrable open quantum spin-chain transfer matrices constructed from trigonometric R-matrices associated to affine Lie algebras $hat g$, and from certain K-matrices (reflection matrices) depending on a discrete parameter p, were recently considered in arXiv:1802.04864 and arXiv:1805.10144. It was shown there that these transfer matrices have quantum group symmetry corresponding to removing the p-th node from the $hat g$ Dynkin diagram. Here we determine the spectrum of these transfer matrices by using analytical Bethe ansatz, and we determine the dependence of the corresponding Bethe equations on p. We propose formulas for the Dynkin labels of the Bethe states in terms of the numbers of Bethe roots of each type.We also briefly study how duality transformations are implemented on the Bethe ansatz solutions.
We construct 4D $mathcal{N}=2$ theories on an infinite family of 4D toric manifolds with the topology of connected sums of $S^2 times S^2$. These theories are constructed through the dimensional reduction along a non-trivial $U(1)$-fiber of 5D theories on toric Sasaki-Einstein manifolds. We discuss the conditions under which such reductions can be carried out and give a partial classification result of the resulting 4D manifolds. We calculate the partition functions of these 4D theories and they involve both instanton and anti-instanton contributions, thus generalizing Pestuns famous result on $S^4$.