No Arabic abstract
Light nuclei production in relativistic $^{197}$Au + $^{197}$Au collisions from 7.7 to 80 GeV is investigated within the Ultra-relativistic-Quantum-Molecular-Dynamics model (UrQMD) with a naive coalescence approach. The results of the production of light nuclei at midrapidity can essentially match up the experimental data and a slight enhancement of combined ratio of ${N_{p}N_{t}}/{N_{d}^{2}}$ where $N_p, N_d$ and $N_t$ represent respectively the yields of proton, deuteron and triton, which is sensitive to the neutron density fluctuations, occurs around 20 GeV. However, this enhanced ${N_{p}N_{t}}/{N_{d}^{2}}$ ratio should not be over-understood considering that the present UrQMD model is a cascade version without equation of state (EoS), i.e. there is an absence of critical end point mechanism. Furthermore, within different rapidity regions, the kinetic temperatures of different light nuclei are extracted by the Blast-wave model analysis and ratios among different light nuclei are also discussed.
Light nuclei production is sensitive to the baryon density fluctuations and can be used to probe the QCD phase transition in relativistic heavy-ion collisions. In this work, we studied the production of proton, deuteron, triton in central Au+Au collisions at $sqrt{s_{mathrm{NN}}}$ = 5, 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV from a transport model (JAM). Based on the coalescence production of light nuclei, we calculated the energy dependence of rapidity density $dN/dy$ and particle ratios ($d/p$, $t/p$, and $t/d$). More importantly, the yield ratio $N_{{t}} times N_{{p}} / N_{{d}}^{2}$, which is sensitive to the neutron density fluctuations, shows a flat energy dependence and cannot describe the non-monotonic trend observed by the STAR experiment. Based on the nucleon coalescence, this work can provide constraint and reference to search for the QCD critical point and/or first order phase transition with light nuclei production in future heavy-ion collision experiments.
Baryon-strangeness correlation (C$_{BS}$) has been investigated with a multi-phase transport model (AMPT) in $^{197}$Au + $^{197}$Au collisions at $sqrt{s_{NN}}$ = 200 GeV. The centrality dependence of C$_{BS}$ is presented within the model, from partonic phase to hadronic matter. We find that the system still reserve partial predicted signatures of C$_{BS}$ after parton coalescence. But after hadronic rescattering, the predicted signatures will be obliterated completely. So it seems that both coalescence hadronization process and hadronic rescattering are responsible for the disappearance of the C$_{BS}$ signatures.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($pi^{pm}$, $K^{pm}$, $K_{s}^{0}$, $p$, $bar{p}$, $phi$, $Lambda$, $bar{Lambda}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$) in Au+Au collisions at $sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $sqrt{s_{NN}}$ (or increasing baryon chemical potential, $mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $pm$10%. The $v_{2}$ values for $phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|eta| < 1.0$) in Au+Au collisions at $sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.