Do you want to publish a course? Click here

Inverse problems for non-linear hyperbolic equations with disjoint sources and receivers

116   0   0.0 ( 0 )
 Added by Ali Feizmohammadi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The paper studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations. We introduce a method to solve inverse problems for non-linear equations using interaction of three waves, that makes it possible to study the inverse problem in all dimensions $n+1geq 3$. We consider the case when the set $Omega_{textrm{in}}$, where the sources are supported, and the set $Omega_{textrm{out}}$, where the observations are made, are separated. As model problems we study both a quasi-linear and also a semi-linear wave equation and show in each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of coordinates. The proof consists of two independent components. In the first half we study multiple-fold linearization of the non-linear wave equation near real parts of Gaussian beams that results in a three-wave interaction. We show that the three-wave interaction can produce a three-to-one scattering data. In the second half of the paper, we study an abstract formulation of the three-to-one scattering relation showing that it recovers the topological, differential and conformal structures of the manifold in a causal diamond set that is the intersection of the future of the point $p_{in}in Omega_{textrm{in}}$ and the past of the point $p_{out}in Omega_{textrm{out}}$. The results do not require any assumptions on the conjugate or cut points.



rate research

Read More

In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Holder stability with both partial boundary and interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under the inversion. In particular, we compute the standard deviation of the noise added to the inversion as a function of the standard deviation of the noise added to the data. As an example, we study the Radon transform in the plane in parallel and fan-beam coordinates, and present numerical examples.
In this chapter, we mainly review theoretical results on inverse source problems for diffusion equations with the Caputo time-fractional derivatives of order $alphain(0,1)$. Our survey covers the following types of inverse problems: 1. determination of time-dependent functions in interior source terms 2. determination of space-dependent functions in interior source terms 3. determination of time-dependent functions appearing in boundary conditions
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated variables, we establish uniqueness results for simultaneously determining both temporal and spatial components without non-vanishing assumptions at $t=0$, which seems novel to the best of our knowledge. Remarkably, mostly we allow a rather flexible choice of the observation time not necessarily starting from $t=0$, which fits into various situations in practice. Our main approach is based on the combination of the Titchmarsh convolution theorem with unique continuation properties and time-analyticity of the PDEs under consideration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا