Do you want to publish a course? Click here

A Temperature Monitoring System Incorporating an Array of Precision Wireless Thermometers

100   0   0.0 ( 0 )
 Added by Amir Javadpour
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper addresses the design and implementation of a real time temperature monitoring system with applications in telemedicine. The system consists of a number of precision wireless thermometers which are conceived and realized to measure the patients body temperature in hospitals and the intensive care units. Each wireless thermometer incorporates an accurate semiconductor temperature sensor, a transceiver operating at 2.4 GHz and a microcontroller that controls the thermometer functionalities. An array of two thermometers are implemented and successfully evaluated in different scenarios, including free space and in vivo tests. Also, an in house developed computer software is used in order to visualize the measurements in addition to detecting rapid increase and alerting high body temperature. The agreement between the experimental data and reference temperature values is significant.



rate research

Read More

This paper presents a wireless neural recording system featuring energy-efficient data compression and encryption. An ultra-high efficiency is achieved by leveraging compressed sensing (CS) for simultaneous data compression and encryption. CS enables sub-Nyquist sampling of neural signals by taking advantage of its intrinsic sparsity. It simultaneously encrypts the data with the sampling matrix being the cryptographic key. To share the key over an insecure wireless channel, we implement an elliptic-curve cryptography (ECC) based key exchanging protocol. The CS operation is executed in a custom-designed IC fabricated in 180nm CMOS technology. Mixed-signal circuits are designed to optimize the power efficiency of the matrix-vector multiplication (MVM) of the CS operation. The ECC algorithm is implemented in a low-power Cortex-M0 microcontroller (MCU). To be protected from timing and power analysis attacks, the implementation avoids possible data-dependent branches and also employs a randomized ECC initialization. At a compression ratio of 8x, the average correlated coefficient between the reconstructed signals and the uncompressed signals is 0.973, while the ciphertext-only attacks (CoA) achieve no better than 0.054 over 200,000 attacks. The prototype achieves a 35x power saving compared with conventional implementation in low-power MCUs. This work demonstrates a promising solution for future chronic neural recording systems with requirements in high energy efficiency and security.
Transformers are critical assets in power systems and transformer failures can cause asset damage, customer outages, and safety concerns. Dominion Energy has a sophisticated monitoring process for the transformers. One of the most cost-efficient, convenient and practical transformer monitoring methods in industry is Dissolved Gas Analysis(DGA). Leveraging new technology, on-line transformer monitoring equipment is able to measure samples automatically. The challenges of unstable sampling measurements and contradicted analysis results for DGA are discussed in this paper. To provide further insight of transformer health and support a new transformer monitoring process in Dominion Energy, a DGA monitoring system is proposed. The DGA analysis methods used in the monitoring system are selected based on laboratory verification results from Dominion Energy. After derive the thresholds from IEEE standard, the solution of the proposed monitoring system and test results are presented. In the end, a historical transformer failure case in Dominion was analyzed and the results indicate the monitoring system can provide prescient information and sufficient supplemental report for making operational decisions.
133 - F. M. Gatta , A. Geri , S. Lauria 2021
In this letter we propose a generalized branch model to be used in DC optimal power flow (DCOPF) applications. Besides AC lines and transformers, the formulation allows for representing variable susceptance branches, phase shifting transformers, HVDC lines, zero impedance lines and open branches. The possibility to model branches with concurrently variable susceptance and controllable phase shift angles is also provided. The model is suited for use in DCOPF formulations aimed at the optimization of remedial actions so as to exploit power system flexibility; applications to small-, medium- and large-scale systems are presented to this purpose.
An ultra-wide bandwidth (UWB) remote-powered positioning system for potential use in tracking floating objects inside space stations is presented. It makes use of battery-less tags that are powered-up and addressed through wireless power transfer in the UHF band and embed an energy efficient pulse generator in the 3-5 GHz UWB band. The system has been mounted on the ESA Mars Rover prototype to demonstrate its functionality and performance. Experimental results show the feasibility of centimeter-level localization accuracy at distances larger than 10 meters, with the capability of determining the position of multiple tags using a 2W-ERP power source in the UHF RFID frequency band.
In this paper, we consider a wireless uplink transmission scenario in which an unmanned aerial vehicle (UAV) serves as an aerial base station collecting data from ground users. To optimize the expected sum uplink transmit rate without any prior knowledge of ground users (e.g., locations, channel state information and transmit power), the trajectory planning problem is optimized via the quantum-inspired reinforcement learning (QiRL) approach. Specifically, the QiRL method adopts novel probabilistic action selection policy and new reinforcement strategy, which are inspired by the collapse phenomenon and amplitude amplification in quantum computation theory, respectively. Numerical results demonstrate that the proposed QiRL solution can offer natural balancing between exploration and exploitation via ranking collapse probabilities of possible actions, compared to the traditional reinforcement learning approaches which are highly dependent on tuned exploration parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا